Issue |
A&A
Volume 386, Number 1, April IV 2002
|
|
---|---|---|
Page(s) | 296 - 307 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20020125 | |
Published online | 15 April 2002 |
Extinction calculations of multi-sphere polycrystalline graphitic clusters
A comparison with the 2175 Å peak and between a rigorous solution and discrete-dipole approximations
1
Department of Astronomy & Space Physics, Uppsala University, PO Box 515, 751 20 Uppsala, Sweden e-mail: anja@astro.uu.se
2
Dpto. de Fisica, Informatica y Matematicas, Universidad Peruana Cayetano Heredia, Aptdo. 4314, Lima, Peru e-mail: jsotelo@upch.edu.pe
3
Department of Materials Science, Uppsala University, PO Box 534, 751 21 Uppsala, Sweden e-mail: gunnar.niklasson@angstrom.uu.se
4
Institute of Surface Chemistry, NAS of Ukraine, 17 Gen. Naumova str., Kiev 03164, Ukraine e-mail: pustovit.vitaly@angstrom.uu.se
Corresponding author: A. C. Andersen, anja@astro.uu.se
Received:
16
October
2001
Accepted:
22
January
2002
Certain dust particles in space are expected to appear as clusters
of individual grains. The morphology of these clusters could be fractal or compact.
In this paper we study the extinction by compact and
fractal polycrystalline graphitic clusters consisting of touching identical spheres, based on the dielectric function of graphite from Draine & Lee ([CITE]).
We compare three general methods for computing the extinction of the clusters
in the wavelength range m,
namely, a rigorous solution (Gérardy & Ausloos [CITE]) and two different discrete-dipole
approximation methods – MarCODES (Markel [CITE]) and DDSCAT
(Draine & Flatau [CITE]).
We consider clusters of
4, 7, 8, 27, 32, 49, 108 and 343
particles of radii either 10 nm or 50 nm, arranged in three
different geometries: open fractal (dimension
), simple cubic and
face-centred cubic.
The rigorous solution shows that the extinction of the fractal clusters,
with
and particle radii 10 nm, displays a peak within 2%
of the location of the observed interstellar extinction peak at
~4.6 μm-1; the smaller the cluster, the closer its peak gets to this
value. By contrast, the peak in the extinction of the more compact
clusters lie more than 4% from 4.6
μm-1.
At short wavelengths (
μm), all the methods show
that fractal clusters have markedly different extinction from those of
non-fractal clusters. At wavelengths >5 μm,
the rigorous solution indicates that the extinction from fractal and
compact clusters are of the same order of magnitude.
It was only possible to compute fully converged results of the rigorous
solution for the smaller clusters, due to computational limitations,
however, we find that both discrete-dipole approximation methods
overestimate the computed extinction of the smaller fractal clusters.
Key words: methods: numerical / scattering / dust, extinction / ISM: general
© ESO, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.