Issue |
A&A
Volume 373, Number 2, July II 2001
|
|
---|---|---|
Page(s) | 511 - 535 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20010561 | |
Published online | 15 July 2001 |
Order and chaos in the local disc stellar kinematics induced by the Galactic bar
Research School of Astronomy and Astrophysics, Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek ACT 2611, Australia
Received:
2
February
2001
Accepted:
11
April
2001
The Galactic bar causes a characteristic splitting of the disc phase space
into regular and chaotic orbit regions which is shown to play an important
role in shaping the stellar velocity distribution in the Solar neighbourhood.
A detailed orbital analysis within an analytical 2D rotating barred potential
reveals that this splitting is mainly dictated by the value of the Hamiltonian
H and the bar induced resonances. In the velocity plane at fixed space
position, the contours of constant H are circles centred on the local solid
rotation velocity of the bar frame and of radius increasing with H. For
reasonable bar strengths, the contour
corresponding to the
effective potential at the Lagrangian points
marks the average
transition from regular to chaotic motion, with the majority of orbits being
chaotic at
. On top of this, the resonances generate an alternation
of regular and chaotic orbit arcs opened towards lower angular momentum and
asymmetric in u for space positions away from the principal axes of the bar.
Test particle simulations of exponential discs in the same potential and a
more realistic high-resolution 3D N-body simulation reveal how the
decoupled evolution of the distribution function in the two kind of regions
and the process of chaotic mixing lead to overdensities in the
chaotic part of the disc velocity distributions outside corotation.
In particular, for realistic space positions of the Sun near or slightly
beyond the outer Lindblad resonance and if u is defined positive towards
the anti-centre, the eccentric quasi-periodic orbits trapped around the stable
orbits -i.e. the bar-aligned closed orbits which asymptotically
become circular at larger distances -produce a broad
regular arc in
velocity space extending within the
zone, whereas the corresponding
region appears as an overdensity of chaotic orbits forced to avoid
that arc. This chaotic overdensity
provides an original interpretation, distinct from the anti-bar elongated
quasi-periodic orbit interpretation proposed by Dehnen ([CITE]), for the
prominent stream of high asymmetric drift and predominantly outward moving
stars clearly emerging from the Hipparcos data. However, the most appropriate
interpretation for this stream remains uncertain.
The effects of spiral arms and of molecular clouds are also briefly discussed
within this context.
Key words: Galaxy: kinematics and dynamics / Galaxy: solar neighbourhood / Galaxy: structure / methods: numerical
© ESO, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.