Issue |
A&A
Volume 372, Number 3, June IV 2001
|
|
---|---|---|
Page(s) | 981 - 997 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20010515 | |
Published online | 15 June 2001 |
The Aromatic Infrared Bands as seen by ISO-SWS: Probing the PAH model *
1
Institut d'Astrophysique Spatiale, Bât. 121, Université de Paris XI, 91405 Orsay Cedex, France
2
CESR, 9 avenue du Colonel Roche, 31028 Toulouse Cedex, France
3
Alonso de Cordoba 3107, Santiago 19, Chile
4
Astron. Dept., Ohio State University, 140 West 18th avenue, Colombus OH 43210, USA
5
Univ. College, ADFA, UNSW Canberra, Australia
6
Max-Planck Inst. für extraterr. Physik, Postfach 1603, 85740 Garching, Germany
Corresponding author: L. Verstraete, Laurent.Verstraete@ias.u-psud.fr
Received:
2
October
2000
Accepted:
29
March
2001
We discuss the Aromatic Infrared Band (AIB) profiles observed by ISO-SWS towards
a number of bright interstellar regions where dense molecular gas is
illuminated by stellar radiation. Our sample spans a broad range of excitation
conditions (exciting radiation fields with effective temperature, Teff, ranging from 23 000 to
45 000 K). The SWS spectra are decomposed coherently in our sample
into Lorentz profiles and a broadband continuum. We find that the individual
profiles of the main AIBs at 3.3, 6.2, 8.6 and 11.3 μm are well represented with at most two
Lorentzians.
The 7.7 μm-AIB has a more complex shape and requires at least three Lorentz profiles.
Furthermore, we show that the positions and widths of these AIBs are remarkably stable (within a few cm-1)
confirming, at higher spectral resolution, the results from ISOCAM-CVF and ISOPHOT-S. This spectral
decomposition with a small number of Lorentz profiles implicitly assumes that most of the observed bandwidth arises from a
few, large carriers. Boulanger et al. ([CITE]) recently proposed that the AIBs are the intrinsic profiles of resonances
in small carbon clusters. This interpretation can be tested by comparing the AIB profile parameters
(band position and width) given in this work to laboratory data on relevant species when it becomes available.
Taking advantage of our decomposition, we extract the profiles of individual AIBs from the data and compare
them to a state-of-the-art model of Polycyclic Aromatic Hydrocarbon (PAH) cation emission. In this model, the
position and width of the AIBs are rather explained by a redshift and a broadening of the PAH vibrational bands
as the temperature of the molecule increases (Joblin et al. [CITE]).
In this context, the present similarity of the AIB profiles
requires that the PAH temperature distribution remains roughly the same whatever the radiation field hardness.
Deriving the temperature distribution of interstellar PAHs, we show that
its hot tail, which controls the AIB spectrum, sensitively depends on Nmin
(the number of C-atoms in the smallest PAH) and Teff. Comparing the observed profiles
of the individual AIBs to our model results, we can match all the AIB profiles (except the
8.6 μm-AIB profile) if is increased with Teff. This increase is naturally explained
in a picture where small PAHs are more efficiently photodissociated in harsher radiation fields.
The observed 8.6 μm-profile, both intensity and width, is not explained by our model.
We then discuss our results in the broader context of ISO observations
of fainter interstellar regions where PAHs are expected to be in neutral form.
Key words: infrared: ISM: lines and bands / ISM: dust, extinction / ISM: molecules
© ESO, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.