Issue |
A&A
Volume 369, Number 1, April I 2001
|
|
---|---|---|
Page(s) | 170 - 173 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20010099 | |
Published online | 15 April 2001 |
Research Note On the binding energy parameter of common envelope evolution
Dependency on the definition of the stellar core boundary during spiral-in
1
Nordic Institute for Theoretical Physics (NORDITA), Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
2
Astronomical Institute , University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
3
Bosscha Observatory, Lembang 40391, Bandung, Indonesia
4
Department of Astronomy, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia e-mail: jasinta@astro.uva.nl
Corresponding author: T. M. Tauris, tauris@nordita.dk
Received:
9
November
2000
Accepted:
9
January
2001
According to the standard picture for binary interactions, the outcome of
binaries surviving the
evolution through a common envelope (CE) and spiral-in phase is determined
by the internal structure of the donor star at the onset of the mass transfer,
as well as the poorly-known efficiency parameter, , for the ejection
of the H-envelope of the donor. In this Research Note we discuss the bifurcation point
which separates the ejected, unprocessed H-rich material from the inner core
region of the donor (the central part of the star which will later contract to
form a compact object). We demonstrate that the exact location of this point
is very important for evaluating the binding energy
parameter, λ, which is used to determine the post-CE
orbital separation. Here we compare various methods to define the bifurcation point
(core/envelope boundary) of evolved stars with masses 4, 7, 10 and
.
We consider the specific nuclear energy production rate profile, the change in the mass-density
gradient (Bisscheroux 1998), the inner region containing less than 10% hydrogen, the method
suggested by Han et al. ([CITE]) and the entropy profile.
We also calculated effective polytropic index profiles.
The entropy profile method measures the convective boundary (at the onset of
flatness in the specific entropy) which is not equivalent
to the core boundary for RGB stars. Hence, this method is not applicable for RGB stars,
unless the actual bifurcation point of a CE is located at
the bottom of the outer convection zone (resulting in larger values of
λ and larger post-CE orbital separations).
On the AGB, where highly degenerate and condensed cores are formed,
we find good agreement between the
various methods, except for massive (~
) stars.
Key words: stars: evolution / stars: mass loss / binaries: general
© ESO, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.