Issue |
A&A
Volume 366, Number 2, February I 2001
|
|
---|---|---|
Page(s) | 636 - 650 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20000292 | |
Published online | 15 February 2001 |
Quantification of molecular cloud structure using the Δ-variance
I. Physikalisches Institut der Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
Corresponding author: F. Bensch, bensch@ph1.uni-koeln.de
Received:
4
September
2000
Accepted:
7
November
2000
We present a detailed study of the Δ-variance as a method to
quantify molecular cloud structure. The Δ-variance was introduced by
Stutzki et al. (1998) to analyze the drift behaviour of scalar
functions and is used to characterize the spatial
structure of observed
molecular cloud images. For fractional Brownian motion structures (
fBm-fractals), characterized by a power law power spectrum and random
phases,
the Δ-variance allows to determine the power spectral index β.
We present algorithms to determine the Δ-variance for
discretely sampled maps and study the influence of
white noise, beam smoothing and the finite spatial extent of the maps.
We find that for images with ,
edge effects can bias the structure parameters when
determined by means of a Fourier transform analysis.
In contrast, the Δ-variance provides a reliable estimate for the
spectral index β, if determined in the spatial domain.
The effects of noise and beam smoothing are analytically represented in a
leading order approximation. This allows to use the Δ-variance
of observed maps even at scales where the influence of both effects
becomes significant, allowing to derive
the spectral index β over a wider range and thus more reliably than
possible otherwise.
The Δ-variance is applied to velocity integrated spectral
line maps of several clouds
observed in rotational transitions of 12CO and 13CO.
We find that the spatial structure of the emission is well characterized
by a power law power spectrum in all cases.
For linear scales larger than ∼0.5 pc
the spectral index is remarkably uniform
for the different clouds and transitions observed (
).
Significantly larger values (
)
are found for observations made with higher linear resolution
toward the molecular cloud MCLD 123.5+24.9 in the
Polaris Flare, indicating a smoother
spatial structure of the emission at small scales (<0.5 pc).
Key words: interstellar medium (ISM): clouds / ISM: structure / ISM: individual objects: polaris flare / turbulence / methods: data analysis
© ESO, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.