Issue |
A&A
Volume 519, September 2010
|
|
---|---|---|
Article Number | A50 | |
Number of page(s) | 9 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201014111 | |
Published online | 10 September 2010 |
Comoving frame models of hot star winds
I. Test of the Sobolev approximation in the case of pure line transitions
1
Ústav teoretické fyziky a astrofyziky PřF MU, 611 37 Brno, Czech Republic e-mail: krticka@physics.muni.cz
2
Astronomický ústav, Akademie věd České republiky, 251 65 Ondřejov, Czech Republic
Received:
21
January
2010
Accepted:
28
April
2010
We provide hot star wind models with radiative force calculated using the solution of comoving frame (CMF) radiative transfer equation. The wind models are calculated for the first stars, O stars, and the central stars of planetary nebulae. We show that without line overlaps and with solely thermal line broadening the pure Sobolev approximation provides a reliable estimate of the radiative force even close to the wind sonic point. Consequently, models with the Sobolev line force provide good approximations to solutions obtained with non-Sobolev transfer. Taking line overlaps into account, the radiative force becomes slightly lower, leading to a decrease in the wind mass-loss rate by roughly 40%. Below the sonic point, the CMF line force is significantly lower than the Sobolev one. In the case of pure thermal broadening, this does not influence the mass-loss rate, as the wind mass-loss rate is set in the supersonic part of the wind. However, when additional line broadening is present (e.g., the turbulent one) the region of low CMF line force may extend outwards to the regions where the mass-loss rate is set. This results in a decrease in the wind mass-loss rate. This effect can at least partly explain the low wind mass-loss rates derived from some observational analyses of luminous O stars.
Key words: stars: winds, outflows / stars: mass-loss / stars: early-type / hydrodynamics / radiative transfer
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.