The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
M. H. M. Morais
A&A, 369 2 (2001) 677-689
Published online: 2001-04-15
This article has been cited by the following article(s):
32 articles
New asteroid clusters and evidence of collisional fragmentation in the L5 Trojan cloud of Mars
A. A. Christou, N. Georgakarakos, A. Marshall-Lee, A. Humpage, M. Ćuk and A. Dell’Oro Astronomy & Astrophysics 698 A42 (2025) https://doi.org/10.1051/0004-6361/202553804
Secular evolution of co-orbital motion of two exoplanets: semi-analytical investigation
Vladislav Sidorenko Celestial Mechanics and Dynamical Astronomy 136 (3) (2024) https://doi.org/10.1007/s10569-024-10197-0
Orbital and Absolute Magnitude Distribution of Jupiter Trojans
David Vokrouhlický, David Nesvorný, Miroslav Brož, William F. Bottke, Rogerio Deienno, Carson D. Fuls and Frank C. Shelly The Astronomical Journal 167 (3) 138 (2024) https://doi.org/10.3847/1538-3881/ad2200
Asteroids co-orbital motion classification based on Machine Learning
Giulia Ciacci, Andrea Barucci, Sara Di Ruzza and Elisa Maria Alessi Monthly Notices of the Royal Astronomical Society 527 (3) 6439 (2023) https://doi.org/10.1093/mnras/stad3603
Analytical Study of the Co-orbital Motion in the Circular Restricted Three-body Problem
Xinhe Shen, Tao Liu and Xinhao Liao Research in Astronomy and Astrophysics 23 (4) 045012 (2023) https://doi.org/10.1088/1674-4527/acc29c
A Review on Co-orbital Motion in Restricted and Planetary Three-body Problems
TAN Pan, SHEN Xin-he, HOU Xi-yun and LIAO Xin-hao Chinese Astronomy and Astrophysics 46 (4) 346 (2022) https://doi.org/10.1016/j.chinastron.2022.11.008
Revisiting the averaged problem in the case of mean-motion resonances in the restricted three-body problem
Alexandre Pousse and Elisa Maria Alessi Nonlinear Dynamics 108 (2) 959 (2022) https://doi.org/10.1007/s11071-022-07229-5
A semi-analytic model for the study of 1/1 resonant dynamics of the planar elliptic restricted co-orbital problem
Miao Li, Yu-Kun Huang and Sheng-Ping Gong Research in Astronomy and Astrophysics 21 (2) 025 (2021) https://doi.org/10.1088/1674-4527/21/2/25
A new perturbative solution to the motion around triangular Lagrangian points in the elliptic restricted three-body problem
Bálint Boldizsár, Tamás Kovács and József Vanyó Celestial Mechanics and Dynamical Astronomy 133 (6) (2021) https://doi.org/10.1007/s10569-021-10018-8
On the instability of Saturn’s hypothetical retrograde co-orbitals
Yukun Huang, Miao Li, Junfeng Li and Shengping Gong Monthly Notices of the Royal Astronomical Society 488 (2) 2543 (2019) https://doi.org/10.1093/mnras/stz1840
Secondary resonances and the boundary of effective stability of Trojan motions
Rocío Isabel Páez and Christos Efthymiopoulos Celestial Mechanics and Dynamical Astronomy 130 (2) (2018) https://doi.org/10.1007/s10569-017-9814-4
On the coplanar eccentric non-restricted co-orbital dynamics
A. Leleu, P. Robutel and A. C. M. Correia Celestial Mechanics and Dynamical Astronomy 130 (3) (2018) https://doi.org/10.1007/s10569-017-9802-8
Dynamics of “jumping” Trojans: a perturbative treatment
Vladislav V. Sidorenko Celestial Mechanics and Dynamical Astronomy 130 (10) (2018) https://doi.org/10.1007/s10569-018-9860-6
On the co-orbital motion in the planar restricted three-body problem: the quasi-satellite motion revisited
Alexandre Pousse, Philippe Robutel and Alain Vienne Celestial Mechanics and Dynamical Astronomy 128 (4) 383 (2017) https://doi.org/10.1007/s10569-016-9749-1
Astrodynamics Network AstroNet-II
Rocío Isabel Páez, Ugo Locatelli and Christos Efthymiopoulos Astrophysics and Space Science Proceedings, Astrodynamics Network AstroNet-II 44 193 (2016) https://doi.org/10.1007/978-3-319-23986-6_14
Rigorous treatment of the averaging process for co-orbital motions in the planetary problem
Philippe Robutel, Laurent Niederman and Alexandre Pousse Computational and Applied Mathematics 35 (3) 675 (2016) https://doi.org/10.1007/s40314-015-0288-2
Trojan resonant dynamics, stability, and chaotic diffusion, for parameters relevant to exoplanetary systems
Rocío Isabel Páez and Christos Efthymiopoulos Celestial Mechanics and Dynamical Astronomy 121 (2) 139 (2015) https://doi.org/10.1007/s10569-014-9591-2
Modeling resonant trojan motions in planetary systems
Christos Efthymiopoulos and Rocío I. Páez Proceedings of the International Astronomical Union 9 (S310) 70 (2014) https://doi.org/10.1017/S1743921314007868
On the co-orbital motion of two planets in quasi-circular orbits
Philippe Robutel and Alexandre Pousse Celestial Mechanics and Dynamical Astronomy 117 (1) 17 (2013) https://doi.org/10.1007/s10569-013-9487-6
A population of Main Belt Asteroids co-orbiting with Ceres and Vesta
Apostolos A. Christou and Paul Wiegert Icarus 217 (1) 27 (2012) https://doi.org/10.1016/j.icarus.2011.10.016
Origin and detectability of co-orbital planets from radial velocity data
C. A. Giuppone, P. Benítez-Llambay and C. Beaugé Monthly Notices of the Royal Astronomical Society no (2012) https://doi.org/10.1111/j.1365-2966.2011.20310.x
The orbit of 2010 TK7: possible regions of stability for other Earth Trojan asteroids
R. Dvorak, C. Lhotka and L. Zhou Astronomy & Astrophysics 541 A127 (2012) https://doi.org/10.1051/0004-6361/201118374
Influence of the coorbital resonance on the rotation of the Trojan satellites of Saturn
Philippe Robutel, Nicolas Rambaux and Maryame El Moutamid Celestial Mechanics and Dynamical Astronomy 113 (1) 1 (2012) https://doi.org/10.1007/s10569-012-9406-2
The resonant structure of Jupiter's Trojan asteroids - II. What happens for different configurations of the planetary system
P. Robutel and J. Bodossian Monthly Notices of the Royal Astronomical Society 399 (1) 69 (2009) https://doi.org/10.1111/j.1365-2966.2009.15280.x
A centenary survey of orbits of co-orbitals of Jupiter
R. Greg Stacey and Martin Connors Planetary and Space Science 56 (3-4) 358 (2008) https://doi.org/10.1016/j.pss.2007.11.002
The long term stability of coorbital moons of the satellites of Saturn
Apostolos A. Christou, Fathi Namouni and Maria Helena Moreira Morais Icarus 192 (1) 106 (2007) https://doi.org/10.1016/j.icarus.2007.06.012
The resonant structure of Jupiter's Trojan asteroids - I. Long-term stability and diffusion
P. Robutel and F. Gabern Monthly Notices of the Royal Astronomical Society 372 (4) 1463 (2006) https://doi.org/10.1111/j.1365-2966.2006.11008.x
Chaotic Diffusion And Effective Stability of Jupiter Trojans
Kleomenis Tsiganis, Harry Varvoglis and Rudolf Dvorak Celestial Mechanics and Dynamical Astronomy 92 (1-3) 71 (2005) https://doi.org/10.1007/s10569-004-3975-7
A Comparison of the Dynamical Evolution of Planetary Systems
Kleomenis Tsiganis, Harry Varvoglis and Rudolf Dvorak A Comparison of the Dynamical Evolution of Planetary Systems 71 (2005) https://doi.org/10.1007/1-4020-4466-6_5
One to One Resonance at High Inclination
R. Brasser, D. C. Heggie and S. Mikkola Celestial Mechanics and Dynamical Astronomy 88 (2) 123 (2004) https://doi.org/10.1023/B:CELE.0000016810.65114.17
Commission 7: Celestial Mechanics and Dynamical Astronomy: (Mecanique Celeste Et Astronomie Dynamique)
John Hadjidemetriou, Andrea Milani, Anne Lemaître, et al. Transactions of the International Astronomical Union 25 (01) 15 (2002) https://doi.org/10.1017/S0251107X00001243
The role of secular resonances on trojans of the terrestrial planets
R. Brasser and H. J. Lehto Monthly Notices of the Royal Astronomical Society 334 (1) 241 (2002) https://doi.org/10.1046/j.1365-8711.2002.05526.x