Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Galaxy Morphology Classification via Deep Semisupervised Learning with Limited Labeled Data

Zhijian Luo, Jianzhen Chen, Zhu Chen, Shaohua Zhang, Liping Fu, Hubing Xiao and Chenggang Shu
The Astrophysical Journal Supplement Series 279 (1) 17 (2025)
https://doi.org/10.3847/1538-4365/addb4c

Half a Million Binary Stars Identified from the Low-resolution Spectra of LAMOST

Yingjie Jing, Tian-Xiang Mao, Jie Wang, Chao Liu and Xiaodian Chen
The Astrophysical Journal Supplement Series 277 (1) 15 (2025)
https://doi.org/10.3847/1538-4365/ada895

Machine learning the gap between real and simulated nebulae

Francesco Belfiore, Michele Ginolfi, Guillermo Blanc, Mederic Boquien, Melanie Chevance, Enrico Congiu, Simon C. O. Glover, Brent Groves, Ralf S. Klessen, J. Eduardo Méndez-Delgado and Thomas G. Williams
Astronomy & Astrophysics 694 A212 (2025)
https://doi.org/10.1051/0004-6361/202451934

Astronomical Image Superresolution Reconstruction with Deep Learning for Better Identification of Interacting Galaxies

Jiawei Miao, Liangping Tu, Hao Liu and Jian Zhao
The Astrophysical Journal Supplement Series 278 (2) 35 (2025)
https://doi.org/10.3847/1538-4365/adca34

Classifying merger stages with adaptive deep learning and cosmological hydrodynamical simulations

Rosa de Graaff, Berta Margalef-Bentabol, Lingyu Wang, Antonio La Marca, William J. Pearson, Vicente Rodriguez-Gomez and Mike Walmsley
Astronomy & Astrophysics 697 A207 (2025)
https://doi.org/10.1051/0004-6361/202452659

Time-scales for the effects of interactions on galaxy properties and SMBH growth

David O’Ryan, Brooke D Simmons, Andreas L Faisst, Izzy L Garland, Tobias Géron, Ghassem Gozaliasl, Steven Gillman, Sofia Guedes Vaz Pinto, William C Keel, Anton M Koekemoer, Sandor Kruk, Karen L Masters, Oscar Montoya C., Mason Redden, Matthew R Thorne, Emily R Walls, Deneth Weerasinghe and John R Weaver
Monthly Notices of the Royal Astronomical Society 539 (4) 2967 (2025)
https://doi.org/10.1093/mnras/staf541

Measuring the Intracluster Light Fraction with Machine Learning

Louisa Canepa, Sarah Brough, Francois Lanusse, Mireia Montes and Nina Hatch
The Astrophysical Journal 980 (2) 245 (2025)
https://doi.org/10.3847/1538-4357/adabc7

The effect of image quality on galaxy merger identification with deep learning

Robert W Bickley, Scott Wilkinson, Leonardo Ferreira, Sara L Ellison, Connor Bottrell and Debarpita Jyoti
Monthly Notices of the Royal Astronomical Society 534 (3) 2533 (2024)
https://doi.org/10.1093/mnras/stae2246

Galaxy mergers in UNIONS – I. A simulation-driven hybrid deep learning ensemble for pure galaxy merger classification

Leonardo Ferreira, Robert W Bickley, Sara L Ellison, David R Patton, Shoshannah Byrne-Mamahit, Scott Wilkinson, Connor Bottrell, Sébastien Fabbro, Stephen D J Gwyn and Alan McConnachie
Monthly Notices of the Royal Astronomical Society 533 (3) 2547 (2024)
https://doi.org/10.1093/mnras/stae1885

ERGO-ML: comparing IllustrisTNG and HSC galaxy images via contrastive learning

Lukas Eisert, Connor Bottrell, Annalisa Pillepich, Rhythm Shimakawa, Vicente Rodriguez-Gomez, Dylan Nelson, Eirini Angeloudi and Marc Huertas-Company
Monthly Notices of the Royal Astronomical Society 528 (4) 7411 (2024)
https://doi.org/10.1093/mnras/stae481

The limitations (and potential) of non-parametric morphology statistics for post-merger identification

Scott Wilkinson, Sara L Ellison, Connor Bottrell, Robert W Bickley, Shoshannah Byrne-Mamahit, Leonardo Ferreira and David R Patton
Monthly Notices of the Royal Astronomical Society 528 (4) 5558 (2024)
https://doi.org/10.1093/mnras/stae287

Automating galaxy morphology classification using k-nearest neighbours and non-parametric statistics

Kavya Mukundan, Preethi Nair, Jeremy Bailin and Wenhao Li
Monthly Notices of the Royal Astronomical Society 533 (1) 292 (2024)
https://doi.org/10.1093/mnras/stae1684

Detecting galaxy tidal features using self-supervised representation learning

Alice Desmons, Sarah Brough and Francois Lanusse
Monthly Notices of the Royal Astronomical Society 531 (4) 4070 (2024)
https://doi.org/10.1093/mnras/stae1402

A post-merger enhancement only in star-forming Type 2 Seyfert galaxies: the deep learning view

M S Avirett-Mackenzie, C Villforth, M Huertas-Company, S Wuyts, D M Alexander, S Bonoli, A Lapi, I E Lopez, C Ramos Almeida and F Shankar
Monthly Notices of the Royal Astronomical Society 528 (4) 6915 (2024)
https://doi.org/10.1093/mnras/stae183

Galaxy merger challenge: A comparison study between machine learning-based detection methods

B. Margalef-Bentabol, L. Wang, A. La Marca, C. Blanco-Prieto, D. Chudy, H. Domínguez-Sánchez, A. D. Goulding, A. Guzmán-Ortega, M. Huertas-Company, G. Martin, W. J. Pearson, V. Rodriguez-Gomez, M. Walmsley, R. W. Bickley, C. Bottrell, C. Conselice and D. O’Ryan
Astronomy & Astrophysics 687 A24 (2024)
https://doi.org/10.1051/0004-6361/202348239

Do galaxy mergers prefer under-dense environments?

U. Sureshkumar, A. Durkalec, A. Pollo, W. J. Pearson, D. J. Farrow, A. Narayanan, J. Loveday, E. N. Taylor and L. E. Suelves
Astronomy & Astrophysics 686 A40 (2024)
https://doi.org/10.1051/0004-6361/202347705

Accurately Estimating Redshifts from CSST Slitless Spectroscopic Survey Using Deep Learning

Xingchen Zhou, Yan Gong, Xin Zhang, Nan Li, Xian-Min Meng, Xuelei Chen, Run Wen, Yunkun Han, Hu Zou, Xian Zhong Zheng, Xiaohu Yang, Hong Guo and Pengjie Zhang
The Astrophysical Journal 977 (1) 69 (2024)
https://doi.org/10.3847/1538-4357/ad8bbf

CEERS Key Paper. IX. Identifying Galaxy Mergers in CEERS NIRCam Images Using Random Forests and Convolutional Neural Networks

Caitlin Rose, Jeyhan S. Kartaltepe, Gregory F. Snyder, Marc Huertas-Company, L. Y. Aaron Yung, Pablo Arrabal Haro, Micaela B. Bagley, Laura Bisigello, Antonello Calabrò, Nikko J. Cleri, Mark Dickinson, Henry C. Ferguson, Steven L. Finkelstein, Adriano Fontana, Andrea Grazian, Norman A. Grogin, Benne W. Holwerda, Kartheik G. Iyer, Lisa J. Kewley, Allison Kirkpatrick, Dale D. Kocevski, Anton M. Koekemoer, Jennifer M. Lotz, Ray A. Lucas, Lorenzo Napolitano, et al.
The Astrophysical Journal Letters 976 (1) L8 (2024)
https://doi.org/10.3847/2041-8213/ad8dd4

Uncovering tidal treasures: automated classification of faint tidal features in DECaLS data

Alexander J Gordon, Annette M N Ferguson and Robert G Mann
Monthly Notices of the Royal Astronomical Society 534 (2) 1459 (2024)
https://doi.org/10.1093/mnras/stae2169

Identifying Mergers in the Legacy Surveys with Few-shot Learning

Shoulin Wei, Xiang Song, Zhijian Zhang, Bo Liang, Wei Dai, Wei Lu and Junxi Tao
The Astrophysical Journal Supplement Series 274 (2) 23 (2024)
https://doi.org/10.3847/1538-4365/ad66ca

Characterizing tidal features around galaxies in cosmological simulations

A Khalid, S Brough, G Martin, L C Kimmig, C D P Lagos, R -S Remus and C Martinez-Lombilla
Monthly Notices of the Royal Astronomical Society 530 (4) 4422 (2024)
https://doi.org/10.1093/mnras/stae1064

ERGO-ML: towards a robust machine learning model for inferring the fraction of accreted stars in galaxies from integral-field spectroscopic maps

Eirini Angeloudi, Jesús Falcón-Barroso, Marc Huertas-Company, Regina Sarmiento, Annalisa Pillepich, Daniel Walo-Martín and Lukas Eisert
Monthly Notices of the Royal Astronomical Society 523 (4) 5408 (2023)
https://doi.org/10.1093/mnras/stad1669

Galaxy pairs in The Three Hundred simulations II: studying bound ones and identifying them via machine learning

Ana Contreras-Santos, Alexander Knebe, Weiguang Cui, et al.
Monthly Notices of the Royal Astronomical Society 522 (1) 1270 (2023)
https://doi.org/10.1093/mnras/stad1061

The Dawes Review 10: The impact of deep learning for the analysis of galaxy surveys

M. Huertas-Company and F. Lanusse
Publications of the Astronomical Society of Australia 40 (2023)
https://doi.org/10.1017/pasa.2022.55

Astrophysics with the Laser Interferometer Space Antenna

Pau Amaro-Seoane, Jeff Andrews, Manuel Arca Sedda, Abbas Askar, Quentin Baghi, Razvan Balasov, Imre Bartos, Simone S. Bavera, Jillian Bellovary, Christopher P. L. Berry, Emanuele Berti, Stefano Bianchi, Laura Blecha, Stéphane Blondin, Tamara Bogdanović, Samuel Boissier, Matteo Bonetti, Silvia Bonoli, Elisa Bortolas, Katelyn Breivik, Pedro R. Capelo, Laurentiu Caramete, Federico Cattorini, Maria Charisi, Sylvain Chaty, et al.
Living Reviews in Relativity 26 (1) (2023)
https://doi.org/10.1007/s41114-022-00041-y

Hidden depths in the local Universe: The Stellar Stream Legacy Survey

David Martínez-Delgado, Andrew P. Cooper, Javier Román, et al.
Astronomy & Astrophysics 671 A141 (2023)
https://doi.org/10.1051/0004-6361/202245011

Galaxy mergers in Subaru HSC-SSP: A deep representation learning approach for identification, and the role of environment on merger incidence

Kiyoaki Christopher Omori, Connor Bottrell, Mike Walmsley, Hassen M. Yesuf, Andy D. Goulding, Xuheng Ding, Gergö Popping, John D. Silverman, Tsutomu T. Takeuchi and Yoshiki Toba
Astronomy & Astrophysics 679 A142 (2023)
https://doi.org/10.1051/0004-6361/202346743

Identifying Galaxy Mergers in Simulated CEERS NIRCam Images Using Random Forests

Caitlin Rose, Jeyhan S. Kartaltepe, Gregory F. Snyder, Vicente Rodriguez-Gomez, L. Y. Aaron Yung, Pablo Arrabal Haro, Micaela B. Bagley, Antonello Calabró, Nikko J. Cleri, M. C. Cooper, Luca Costantin, Darren Croton, Mark Dickinson, Steven L. Finkelstein, Boris Häußler, Benne W. Holwerda, Anton M. Koekemoer, Peter Kurczynski, Ray A. Lucas, Kameswara Bharadwaj Mantha, Casey Papovich, Pablo G. Pérez-González, Nor Pirzkal, Rachel S. Somerville, Amber N. Straughn and Sandro Tacchella
The Astrophysical Journal 942 (1) 54 (2023)
https://doi.org/10.3847/1538-4357/ac9f10

Galaxy and mass assembly (GAMA): comparing visually and spectroscopically identified galaxy merger samples

Alice Desmons, Sarah Brough, Cristina Martínez-Lombilla, Roberto De Propris, Benne Holwerda and Ángel R López-Sánchez
Monthly Notices of the Royal Astronomical Society 523 (3) 4381 (2023)
https://doi.org/10.1093/mnras/stad1639

AGNs in post-mergers from the ultraviolet near infrared optical northern survey

Robert W Bickley, Sara L Ellison, David R Patton and Scott Wilkinson
Monthly Notices of the Royal Astronomical Society 519 (4) 6149 (2023)
https://doi.org/10.1093/mnras/stad088

The combined and respective roles of imaging and stellar kinematics in identifying galaxy merger remnants

Connor Bottrell, Maan H Hani, Hossen Teimoorinia, David R Patton and Sara L Ellison
Monthly Notices of the Royal Astronomical Society 511 (1) 100 (2022)
https://doi.org/10.1093/mnras/stab3717

The merger fraction of post-starburst galaxies in UNIONS

Scott Wilkinson, Sara L Ellison, Connor Bottrell, Robert W Bickley, Stephen Gwyn, Jean-Charles Cuillandre and Vivienne Wild
Monthly Notices of the Royal Astronomical Society 516 (3) 4354 (2022)
https://doi.org/10.1093/mnras/stac1962

Machine learning technique for morphological classification of galaxies from the SDSS. III. The CNN image-based inference of detailed features

V. KHRAMTSOV, I. B. VAVILOVA, D. V. DOBRYCHEVA, et al.
Kosmìčna nauka ì tehnologìâ 28 (5) 27 (2022)
https://doi.org/10.15407/knit2022.05.027

Star formation characteristics of CNN-identified post-mergers in the Ultraviolet Near Infrared Optical Northern Survey (UNIONS)

Robert W Bickley, Sara L Ellison, David R Patton, et al.
Monthly Notices of the Royal Astronomical Society 514 (3) 3294 (2022)
https://doi.org/10.1093/mnras/stac1500

Machine learning technique for morphological classification of galaxies from SDSS. II. The image-based morphological catalogs of galaxies at 0.02 I. B. VAVILOVA, V. KHRAMTSOV, D. V. DOBRYCHEVA, et al.
Kosmìčna nauka ì tehnologìâ 28 (1) 03 (2022)
https://doi.org/10.15407/knit2022.01.003

Characterization of low surface brightness structures in annotated deep images

Elisabeth Sola, Pierre-Alain Duc, Felix Richards, et al.
Astronomy & Astrophysics 662 A124 (2022)
https://doi.org/10.1051/0004-6361/202142675

DECORAS: detection and characterization of radio-astronomical sources using deep learning

S Rezaei, J P McKean, M Biehl and A Javadpour
Monthly Notices of the Royal Astronomical Society 510 (4) 5891 (2022)
https://doi.org/10.1093/mnras/stab3519

3D detection and characterization of ALMA sources through deep learning

Michele Delli Veneri, Łukasz Tychoniec, Fabrizia Guglielmetti, Giuseppe Longo and Eric Villard
Monthly Notices of the Royal Astronomical Society 518 (3) 3407 (2022)
https://doi.org/10.1093/mnras/stac3314

SDSS-IV MaNGA: Unveiling Galaxy Interaction by Merger Stages with Machine Learning

Yu-Yen Chang, Lihwai Lin, Hsi-An Pan, Chieh-An Lin, Bau-Ching Hsieh, Connor Bottrell and Pin-Wei Wang
The Astrophysical Journal 937 (2) 97 (2022)
https://doi.org/10.3847/1538-4357/ac8c27

A Simulation-driven Deep Learning Approach for Separating Mergers and Star-forming Galaxies: The Formation Histories of Clumpy Galaxies in All of the CANDELS Fields

Leonardo Ferreira, Christopher J. Conselice, Ulrike Kuchner and Clár-Bríd Tohill
The Astrophysical Journal 931 (1) 34 (2022)
https://doi.org/10.3847/1538-4357/ac66ea

DeepMerge – II. Building robust deep learning algorithms for merging galaxy identification across domains

A Ćiprijanović, D Kafkes, K Downey, et al.
Monthly Notices of the Royal Astronomical Society 506 (1) 677 (2021)
https://doi.org/10.1093/mnras/stab1677

An IFU View of the Active Galactic Nuclei in MaNGA Galaxy Pairs

Gaoxiang Jin, Y. Sophia Dai, Hsi-An Pan, Lihwai Lin, Cheng Li, Bau-Ching Hsieh, Shiyin Shen, Fang-Ting Yuan, Shuai Feng, Cheng Cheng, Hai Xu, Jia-Sheng Huang and Kai Zhang
The Astrophysical Journal 923 (1) 6 (2021)
https://doi.org/10.3847/1538-4357/ac2901

Convolutional neural network identification of galaxy post-mergers in UNIONS using IllustrisTNG

Robert W Bickley, Connor Bottrell, Maan H Hani, et al.
Monthly Notices of the Royal Astronomical Society 504 (1) 372 (2021)
https://doi.org/10.1093/mnras/stab806

Merger or Not: Accounting for Human Biases in Identifying Galactic Merger Signatures

Erini L. Lambrides, Duncan J. Watts, Marco Chiaberge, Kirill Tchernyshyov, Allison Kirkpatrick, Eileen T. Meyer, Timothy Heckman, Raymond Simons, Oz Amram, Kirsten R. Hall, Arianna Long and Colin Norman
The Astrophysical Journal 919 (1) 43 (2021)
https://doi.org/10.3847/1538-4357/ac0fdf

Towards robust determination of non-parametric morphologies in marginal astronomical data: resolving uncertainties with cosmological hydrodynamical simulations

Mallory D Thorp, Asa F L Bluck, Sara L Ellison, et al.
Monthly Notices of the Royal Astronomical Society 507 (1) 886 (2021)
https://doi.org/10.1093/mnras/stab2201

Galaxy pairs in the Sloan Digital Sky Survey – XIV. Galaxy mergers do not lie on the fundamental metallicity relation

Martin Sparre, David R Patton, Sara L Ellison and Sebastián Bustamante
Monthly Notices of the Royal Astronomical Society 494 (3) 3469 (2020)
https://doi.org/10.1093/mnras/staa1025

Towards a consistent framework of comparing galaxy mergers in observations and simulations

L. Wang, W. J. Pearson and V. Rodriguez-Gomez
Astronomy & Astrophysics 644 A87 (2020)
https://doi.org/10.1051/0004-6361/202038084

DeepMerge: Classifying high-redshift merging galaxies with deep neural networks

A. Ćiprijanović, G.F. Snyder, B. Nord and J.E.G. Peek
Astronomy and Computing 32 100390 (2020)
https://doi.org/10.1016/j.ascom.2020.100390

Galaxy interactions in IllustrisTNG-100, I: The power and limitations of visual identification

Kelly A Blumenthal, Jorge Moreno, Joshua E Barnes, et al.
Monthly Notices of the Royal Astronomical Society 492 (2) 2075 (2020)
https://doi.org/10.1093/mnras/stz3472

Census and classification of low-surface-brightness structures in nearby early-type galaxies from the MATLAS survey

Michal Bílek, Pierre-Alain Duc, Jean-Charles Cuillandre, et al.
Monthly Notices of the Royal Astronomical Society 498 (2) 2138 (2020)
https://doi.org/10.1093/mnras/staa2248

Galaxy Merger Rates up to z ∼ 3 Using a Bayesian Deep Learning Model: A Major-merger Classifier Using IllustrisTNG Simulation Data

Leonardo Ferreira, Christopher J. Conselice, Kenneth Duncan, Ting-Yun Cheng, Alex Griffiths and Amy Whitney
The Astrophysical Journal 895 (2) 115 (2020)
https://doi.org/10.3847/1538-4357/ab8f9b

Interacting galaxies in the IllustrisTNG simulations - I: Triggered star formation in a cosmological context

David R Patton, Kieran D Wilson, Colin J Metrow, et al.
Monthly Notices of the Royal Astronomical Society 494 (4) 4969 (2020)
https://doi.org/10.1093/mnras/staa913

Narrow-band Hα imaging of nearby Wolf–Rayet galaxies

A Paswan, Kanak Saha and A Omar
Monthly Notices of the Royal Astronomical Society 490 (3) 3448 (2019)
https://doi.org/10.1093/mnras/stz2833

Deep learning predictions of galaxy merger stage and the importance of observational realism

Connor Bottrell, Maan H Hani, Hossen Teimoorinia, et al.
Monthly Notices of the Royal Astronomical Society 490 (4) 5390 (2019)
https://doi.org/10.1093/mnras/stz2934