The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
This article has been cited by the following article(s):
Galaxy Morphology Classification via Deep Semisupervised Learning with Limited Labeled Data
Zhijian Luo, Jianzhen Chen, Zhu Chen, Shaohua Zhang, Liping Fu, Hubing Xiao and Chenggang Shu The Astrophysical Journal Supplement Series 279(1) 17 (2025) https://doi.org/10.3847/1538-4365/addb4c
Half a Million Binary Stars Identified from the Low-resolution Spectra of LAMOST
Yingjie Jing, Tian-Xiang Mao, Jie Wang, Chao Liu and Xiaodian Chen The Astrophysical Journal Supplement Series 277(1) 15 (2025) https://doi.org/10.3847/1538-4365/ada895
Machine learning the gap between real and simulated nebulae
Francesco Belfiore, Michele Ginolfi, Guillermo Blanc, Mederic Boquien, Melanie Chevance, Enrico Congiu, Simon C. O. Glover, Brent Groves, Ralf S. Klessen, J. Eduardo Méndez-Delgado and Thomas G. Williams Astronomy & Astrophysics 694 A212 (2025) https://doi.org/10.1051/0004-6361/202451934
Astronomical Image Superresolution Reconstruction with Deep Learning for Better Identification of Interacting Galaxies
Classifying merger stages with adaptive deep learning and cosmological hydrodynamical simulations
Rosa de Graaff, Berta Margalef-Bentabol, Lingyu Wang, Antonio La Marca, William J. Pearson, Vicente Rodriguez-Gomez and Mike Walmsley Astronomy & Astrophysics 697 A207 (2025) https://doi.org/10.1051/0004-6361/202452659
Time-scales for the effects of interactions on galaxy properties and SMBH growth
David O’Ryan, Brooke D Simmons, Andreas L Faisst, Izzy L Garland, Tobias Géron, Ghassem Gozaliasl, Steven Gillman, Sofia Guedes Vaz Pinto, William C Keel, Anton M Koekemoer, Sandor Kruk, Karen L Masters, Oscar Montoya C., Mason Redden, Matthew R Thorne, Emily R Walls, Deneth Weerasinghe and John R Weaver Monthly Notices of the Royal Astronomical Society 539(4) 2967 (2025) https://doi.org/10.1093/mnras/staf541
Measuring the Intracluster Light Fraction with Machine Learning
Louisa Canepa, Sarah Brough, Francois Lanusse, Mireia Montes and Nina Hatch The Astrophysical Journal 980(2) 245 (2025) https://doi.org/10.3847/1538-4357/adabc7
The effect of image quality on galaxy merger identification with deep learning
Robert W Bickley, Scott Wilkinson, Leonardo Ferreira, Sara L Ellison, Connor Bottrell and Debarpita Jyoti Monthly Notices of the Royal Astronomical Society 534(3) 2533 (2024) https://doi.org/10.1093/mnras/stae2246
Galaxy mergers in UNIONS – I. A simulation-driven hybrid deep learning ensemble for pure galaxy merger classification
Leonardo Ferreira, Robert W Bickley, Sara L Ellison, David R Patton, Shoshannah Byrne-Mamahit, Scott Wilkinson, Connor Bottrell, Sébastien Fabbro, Stephen D J Gwyn and Alan McConnachie Monthly Notices of the Royal Astronomical Society 533(3) 2547 (2024) https://doi.org/10.1093/mnras/stae1885
ERGO-ML: comparing IllustrisTNG and HSC galaxy images via contrastive learning
Lukas Eisert, Connor Bottrell, Annalisa Pillepich, Rhythm Shimakawa, Vicente Rodriguez-Gomez, Dylan Nelson, Eirini Angeloudi and Marc Huertas-Company Monthly Notices of the Royal Astronomical Society 528(4) 7411 (2024) https://doi.org/10.1093/mnras/stae481
The limitations (and potential) of non-parametric morphology statistics for post-merger identification
Scott Wilkinson, Sara L Ellison, Connor Bottrell, Robert W Bickley, Shoshannah Byrne-Mamahit, Leonardo Ferreira and David R Patton Monthly Notices of the Royal Astronomical Society 528(4) 5558 (2024) https://doi.org/10.1093/mnras/stae287
Automating galaxy morphology classification using k-nearest neighbours and non-parametric statistics
Kavya Mukundan, Preethi Nair, Jeremy Bailin and Wenhao Li Monthly Notices of the Royal Astronomical Society 533(1) 292 (2024) https://doi.org/10.1093/mnras/stae1684
Detecting galaxy tidal features using self-supervised representation learning
Alice Desmons, Sarah Brough and Francois Lanusse Monthly Notices of the Royal Astronomical Society 531(4) 4070 (2024) https://doi.org/10.1093/mnras/stae1402
A post-merger enhancement only in star-forming Type 2 Seyfert galaxies: the deep learning view
M S Avirett-Mackenzie, C Villforth, M Huertas-Company, S Wuyts, D M Alexander, S Bonoli, A Lapi, I E Lopez, C Ramos Almeida and F Shankar Monthly Notices of the Royal Astronomical Society 528(4) 6915 (2024) https://doi.org/10.1093/mnras/stae183
Kiyoaki Christopher Omori 33 (2024) https://doi.org/10.1007/978-981-97-8735-7_3
Galaxy merger challenge: A comparison study between machine learning-based detection methods
B. Margalef-Bentabol, L. Wang, A. La Marca, C. Blanco-Prieto, D. Chudy, H. Domínguez-Sánchez, A. D. Goulding, A. Guzmán-Ortega, M. Huertas-Company, G. Martin, W. J. Pearson, V. Rodriguez-Gomez, M. Walmsley, R. W. Bickley, C. Bottrell, C. Conselice and D. O’Ryan Astronomy & Astrophysics 687 A24 (2024) https://doi.org/10.1051/0004-6361/202348239
Do galaxy mergers prefer under-dense environments?
Accurately Estimating Redshifts from CSST Slitless Spectroscopic Survey Using Deep Learning
Xingchen Zhou, Yan Gong, Xin Zhang, Nan Li, Xian-Min Meng, Xuelei Chen, Run Wen, Yunkun Han, Hu Zou, Xian Zhong Zheng, Xiaohu Yang, Hong Guo and Pengjie Zhang The Astrophysical Journal 977(1) 69 (2024) https://doi.org/10.3847/1538-4357/ad8bbf
CEERS Key Paper. IX. Identifying Galaxy Mergers in CEERS NIRCam Images Using Random Forests and Convolutional Neural Networks
Caitlin Rose, Jeyhan S. Kartaltepe, Gregory F. Snyder, Marc Huertas-Company, L. Y. Aaron Yung, Pablo Arrabal Haro, Micaela B. Bagley, Laura Bisigello, Antonello Calabrò, Nikko J. Cleri, Mark Dickinson, Henry C. Ferguson, Steven L. Finkelstein, Adriano Fontana, Andrea Grazian, Norman A. Grogin, Benne W. Holwerda, Kartheik G. Iyer, Lisa J. Kewley, Allison Kirkpatrick, Dale D. Kocevski, Anton M. Koekemoer, Jennifer M. Lotz, Ray A. Lucas, Lorenzo Napolitano, et al. The Astrophysical Journal Letters 976(1) L8 (2024) https://doi.org/10.3847/2041-8213/ad8dd4
Uncovering tidal treasures: automated classification of faint tidal features in DECaLS data
Alexander J Gordon, Annette M N Ferguson and Robert G Mann Monthly Notices of the Royal Astronomical Society 534(2) 1459 (2024) https://doi.org/10.1093/mnras/stae2169
Identifying Mergers in the Legacy Surveys with Few-shot Learning
Shoulin Wei, Xiang Song, Zhijian Zhang, Bo Liang, Wei Dai, Wei Lu and Junxi Tao The Astrophysical Journal Supplement Series 274(2) 23 (2024) https://doi.org/10.3847/1538-4365/ad66ca
Characterizing tidal features around galaxies in cosmological simulations
A Khalid, S Brough, G Martin, L C Kimmig, C D P Lagos, R -S Remus and C Martinez-Lombilla Monthly Notices of the Royal Astronomical Society 530(4) 4422 (2024) https://doi.org/10.1093/mnras/stae1064
ERGO-ML: towards a robust machine learning model for inferring the fraction of accreted stars in galaxies from integral-field spectroscopic maps
Eirini Angeloudi, Jesús Falcón-Barroso, Marc Huertas-Company, Regina Sarmiento, Annalisa Pillepich, Daniel Walo-Martín and Lukas Eisert Monthly Notices of the Royal Astronomical Society 523(4) 5408 (2023) https://doi.org/10.1093/mnras/stad1669
Galaxy pairs in The Three Hundred simulations II: studying bound ones and identifying them via machine learning
Ana Contreras-Santos, Alexander Knebe, Weiguang Cui, et al. Monthly Notices of the Royal Astronomical Society 522(1) 1270 (2023) https://doi.org/10.1093/mnras/stad1061
The Dawes Review 10: The impact of deep learning for the analysis of galaxy surveys
Astrophysics with the Laser Interferometer Space Antenna
Pau Amaro-Seoane, Jeff Andrews, Manuel Arca Sedda, Abbas Askar, Quentin Baghi, Razvan Balasov, Imre Bartos, Simone S. Bavera, Jillian Bellovary, Christopher P. L. Berry, Emanuele Berti, Stefano Bianchi, Laura Blecha, Stéphane Blondin, Tamara Bogdanović, Samuel Boissier, Matteo Bonetti, Silvia Bonoli, Elisa Bortolas, Katelyn Breivik, Pedro R. Capelo, Laurentiu Caramete, Federico Cattorini, Maria Charisi, Sylvain Chaty, et al. Living Reviews in Relativity 26(1) (2023) https://doi.org/10.1007/s41114-022-00041-y
Hidden depths in the local Universe: The Stellar Stream Legacy Survey
Galaxy mergers in Subaru HSC-SSP: A deep representation learning approach for identification, and the role of environment on merger incidence
Kiyoaki Christopher Omori, Connor Bottrell, Mike Walmsley, Hassen M. Yesuf, Andy D. Goulding, Xuheng Ding, Gergö Popping, John D. Silverman, Tsutomu T. Takeuchi and Yoshiki Toba Astronomy & Astrophysics 679 A142 (2023) https://doi.org/10.1051/0004-6361/202346743
Identifying Galaxy Mergers in Simulated CEERS NIRCam Images Using Random Forests
Caitlin Rose, Jeyhan S. Kartaltepe, Gregory F. Snyder, Vicente Rodriguez-Gomez, L. Y. Aaron Yung, Pablo Arrabal Haro, Micaela B. Bagley, Antonello Calabró, Nikko J. Cleri, M. C. Cooper, Luca Costantin, Darren Croton, Mark Dickinson, Steven L. Finkelstein, Boris Häußler, Benne W. Holwerda, Anton M. Koekemoer, Peter Kurczynski, Ray A. Lucas, Kameswara Bharadwaj Mantha, Casey Papovich, Pablo G. Pérez-González, Nor Pirzkal, Rachel S. Somerville, Amber N. Straughn and Sandro Tacchella The Astrophysical Journal 942(1) 54 (2023) https://doi.org/10.3847/1538-4357/ac9f10
Galaxy and mass assembly (GAMA): comparing visually and spectroscopically identified galaxy merger samples
Alice Desmons, Sarah Brough, Cristina Martínez-Lombilla, Roberto De Propris, Benne Holwerda and Ángel R López-Sánchez Monthly Notices of the Royal Astronomical Society 523(3) 4381 (2023) https://doi.org/10.1093/mnras/stad1639
AGNs in post-mergers from the ultraviolet near infrared optical northern survey
Robert W Bickley, Sara L Ellison, David R Patton and Scott Wilkinson Monthly Notices of the Royal Astronomical Society 519(4) 6149 (2023) https://doi.org/10.1093/mnras/stad088
Merger identification through photometric bands, colours, and their errors
The combined and respective roles of imaging and stellar kinematics in identifying galaxy merger remnants
Connor Bottrell, Maan H Hani, Hossen Teimoorinia, David R Patton and Sara L Ellison Monthly Notices of the Royal Astronomical Society 511(1) 100 (2022) https://doi.org/10.1093/mnras/stab3717
The merger fraction of post-starburst galaxies in UNIONS
Scott Wilkinson, Sara L Ellison, Connor Bottrell, Robert W Bickley, Stephen Gwyn, Jean-Charles Cuillandre and Vivienne Wild Monthly Notices of the Royal Astronomical Society 516(3) 4354 (2022) https://doi.org/10.1093/mnras/stac1962
Machine learning technique for morphological classification of galaxies from the SDSS. III. The CNN image-based inference of detailed features
Star formation characteristics of CNN-identified post-mergers in the Ultraviolet Near Infrared Optical Northern Survey (UNIONS)
Robert W Bickley, Sara L Ellison, David R Patton, et al. Monthly Notices of the Royal Astronomical Society 514(3) 3294 (2022) https://doi.org/10.1093/mnras/stac1500
Machine learning technique for morphological classification of galaxies from SDSS. II. The image-based morphological catalogs of galaxies at 0.02
I. B. VAVILOVA, V. KHRAMTSOV, D. V. DOBRYCHEVA, et al. Kosmìčna nauka ì tehnologìâ 28(1) 03 (2022) https://doi.org/10.15407/knit2022.01.003
DECORAS: detection and characterization of radio-astronomical sources using deep learning
S Rezaei, J P McKean, M Biehl and A Javadpour Monthly Notices of the Royal Astronomical Society 510(4) 5891 (2022) https://doi.org/10.1093/mnras/stab3519
3D detection and characterization of ALMA sources through deep learning
Michele Delli Veneri, Łukasz Tychoniec, Fabrizia Guglielmetti, Giuseppe Longo and Eric Villard Monthly Notices of the Royal Astronomical Society 518(3) 3407 (2022) https://doi.org/10.1093/mnras/stac3314
SDSS-IV MaNGA: Unveiling Galaxy Interaction by Merger Stages with Machine Learning
Yu-Yen Chang, Lihwai Lin, Hsi-An Pan, Chieh-An Lin, Bau-Ching Hsieh, Connor Bottrell and Pin-Wei Wang The Astrophysical Journal 937(2) 97 (2022) https://doi.org/10.3847/1538-4357/ac8c27
A Simulation-driven Deep Learning Approach for Separating Mergers and Star-forming Galaxies: The Formation Histories of Clumpy Galaxies in All of the CANDELS Fields
Leonardo Ferreira, Christopher J. Conselice, Ulrike Kuchner and Clár-Bríd Tohill The Astrophysical Journal 931(1) 34 (2022) https://doi.org/10.3847/1538-4357/ac66ea
DeepMerge – II. Building robust deep learning algorithms for merging galaxy identification across domains
An IFU View of the Active Galactic Nuclei in MaNGA Galaxy Pairs
Gaoxiang Jin, Y. Sophia Dai, Hsi-An Pan, Lihwai Lin, Cheng Li, Bau-Ching Hsieh, Shiyin Shen, Fang-Ting Yuan, Shuai Feng, Cheng Cheng, Hai Xu, Jia-Sheng Huang and Kai Zhang The Astrophysical Journal 923(1) 6 (2021) https://doi.org/10.3847/1538-4357/ac2901
Convolutional neural network identification of galaxy post-mergers in UNIONS using IllustrisTNG
Robert W Bickley, Connor Bottrell, Maan H Hani, et al. Monthly Notices of the Royal Astronomical Society 504(1) 372 (2021) https://doi.org/10.1093/mnras/stab806
Merger or Not: Accounting for Human Biases in Identifying Galactic Merger Signatures
Erini L. Lambrides, Duncan J. Watts, Marco Chiaberge, Kirill Tchernyshyov, Allison Kirkpatrick, Eileen T. Meyer, Timothy Heckman, Raymond Simons, Oz Amram, Kirsten R. Hall, Arianna Long and Colin Norman The Astrophysical Journal 919(1) 43 (2021) https://doi.org/10.3847/1538-4357/ac0fdf
Towards robust determination of non-parametric morphologies in marginal astronomical data: resolving uncertainties with cosmological hydrodynamical simulations
Mallory D Thorp, Asa F L Bluck, Sara L Ellison, et al. Monthly Notices of the Royal Astronomical Society 507(1) 886 (2021) https://doi.org/10.1093/mnras/stab2201
Galaxy morphology classification using automated machine learning
Galaxy pairs in the Sloan Digital Sky Survey – XIV. Galaxy mergers do not lie on the fundamental metallicity relation
Martin Sparre, David R Patton, Sara L Ellison and Sebastián Bustamante Monthly Notices of the Royal Astronomical Society 494(3) 3469 (2020) https://doi.org/10.1093/mnras/staa1025
Mergers trigger active galactic nuclei out to z ∼ 0.6
Galaxy interactions in IllustrisTNG-100, I: The power and limitations of visual identification
Kelly A Blumenthal, Jorge Moreno, Joshua E Barnes, et al. Monthly Notices of the Royal Astronomical Society 492(2) 2075 (2020) https://doi.org/10.1093/mnras/stz3472
Census and classification of low-surface-brightness structures in nearby early-type galaxies from the MATLAS survey
Michal Bílek, Pierre-Alain Duc, Jean-Charles Cuillandre, et al. Monthly Notices of the Royal Astronomical Society 498(2) 2138 (2020) https://doi.org/10.1093/mnras/staa2248
Galaxy Merger Rates up to z ∼ 3 Using a Bayesian Deep Learning Model: A Major-merger Classifier Using IllustrisTNG Simulation Data
Leonardo Ferreira, Christopher J. Conselice, Kenneth Duncan, Ting-Yun Cheng, Alex Griffiths and Amy Whitney The Astrophysical Journal 895(2) 115 (2020) https://doi.org/10.3847/1538-4357/ab8f9b
Interacting galaxies in the IllustrisTNG simulations - I: Triggered star formation in a cosmological context
David R Patton, Kieran D Wilson, Colin J Metrow, et al. Monthly Notices of the Royal Astronomical Society 494(4) 4969 (2020) https://doi.org/10.1093/mnras/staa913
Narrow-band Hα imaging of nearby Wolf–Rayet galaxies
Deep learning predictions of galaxy merger stage and the importance of observational realism
Connor Bottrell, Maan H Hani, Hossen Teimoorinia, et al. Monthly Notices of the Royal Astronomical Society 490(4) 5390 (2019) https://doi.org/10.1093/mnras/stz2934