Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

CIRCLEZ : Reliable photometric redshifts for active galactic nuclei computed solely using photometry from Legacy Survey Imaging for DESI

A. Saxena, M. Salvato, W. Roster, R. Shirley, J. Buchner, J. Wolf, C. Kohl, H. Starck, T. Dwelly, J. Comparat, A. Malyali, S. Krippendorf, A. Zenteno, D. Lang, D. Schlegel, R. Zhou, A. Dey, F. Valdes, A. Myers, R. J. Assef, C. Ricci, M. J. Temple, A. Merloni, A. Koekemoer, S. F. Anderson, et al.
Astronomy & Astrophysics 690 A365 (2024)
https://doi.org/10.1051/0004-6361/202450886

Sustainable groundwater management using stacked LSTM with deep neural network

Eatedal Alabdulkreem, Nuha Alruwais, Hany Mahgoub, Ashit Kumar Dutta, Majdi Khalid, Radwa Marzouk, Abdelwahed Motwakel and Suhanda Drar
Urban Climate 49 101469 (2023)
https://doi.org/10.1016/j.uclim.2023.101469

Photometric redshifts from SDSS images with an interpretable deep capsule network

Biprateep Dey, Brett H Andrews, Jeffrey A Newman, Yao-Yuan Mao, Markus Michael Rau and Rongpu Zhou
Monthly Notices of the Royal Astronomical Society 515 (4) 5285 (2022)
https://doi.org/10.1093/mnras/stac2105

Machine learning technique for morphological classification of galaxies from the SDSS. III. The CNN image-based inference of detailed features

V. KHRAMTSOV, I. B. VAVILOVA, D. V. DOBRYCHEVA, et al.
Kosmìčna nauka ì tehnologìâ 28 (5) 27 (2022)
https://doi.org/10.15407/knit2022.05.027

Machine learning technique for morphological classification of galaxies from SDSS. II. The image-based morphological catalogs of galaxies at 0.02 I. B. VAVILOVA, V. KHRAMTSOV, D. V. DOBRYCHEVA, et al.
Kosmìčna nauka ì tehnologìâ 28 (1) 03 (2022)
https://doi.org/10.15407/knit2022.01.003

ulisse: A tool for one-shot sky exploration and its application for detection of active galactic nuclei

Lars Doorenbos, Olena Torbaniuk, Stefano Cavuoti, et al.
Astronomy & Astrophysics 666 A171 (2022)
https://doi.org/10.1051/0004-6361/202243900

A Review on Interpretable and Explainable Artificial Intelligence in Hydroclimatic Applications

Hakan Başağaoğlu, Debaditya Chakraborty, Cesar Do Lago, Lilianna Gutierrez, Mehmet Arif Şahinli, Marcio Giacomoni, Chad Furl, Ali Mirchi, Daniel Moriasi and Sema Sevinç Şengör
Water 14 (8) 1230 (2022)
https://doi.org/10.3390/w14081230

Improving the reliability of photometric redshift with machine learning

Oleksandra Razim, Stefano Cavuoti, Massimo Brescia, et al.
Monthly Notices of the Royal Astronomical Society 507 (4) 5034 (2021)
https://doi.org/10.1093/mnras/stab2334

Estimation of Photometric Redshifts. I. Machine-learning Inference for Pan-STARRS1 Galaxies Using Neural Networks

Joongoo Lee and Min-Su Shin
The Astronomical Journal 162 (6) 297 (2021)
https://doi.org/10.3847/1538-3881/ac2e96

Photometric selection and redshifts for quasars in the Kilo-Degree Survey Data Release 4

S. J. Nakoneczny, M. Bilicki, A. Pollo, et al.
Astronomy & Astrophysics 649 A81 (2021)
https://doi.org/10.1051/0004-6361/202039684

Intelligent Astrophysics

Maurizio D’Addona, Giuseppe Riccio, Stefano Cavuoti, Crescenzo Tortora and Massimo Brescia
Emergence, Complexity and Computation, Intelligent Astrophysics 39 225 (2021)
https://doi.org/10.1007/978-3-030-65867-0_10

The PAU Survey: narrow-band photometric redshifts using Gaussian processes

John Y H Soo, Benjamin Joachimi, Martin Eriksen, et al.
Monthly Notices of the Royal Astronomical Society 503 (3) 4118 (2021)
https://doi.org/10.1093/mnras/stab711

Exploring New Redshift Indicators for Radio-Powerful AGN

Rodrigo Carvajal, Israel Matute, José Afonso, Stergios Amarantidis, Davi Barbosa, Pedro Cunha and Andrew Humphrey
Galaxies 9 (4) 86 (2021)
https://doi.org/10.3390/galaxies9040086

Photometric Redshifts With Machine Learning, Lights and Shadows on a Complex Data Science Use Case

Massimo Brescia, Stefano Cavuoti, Oleksandra Razim, et al.
Frontiers in Astronomy and Space Sciences 8 (2021)
https://doi.org/10.3389/fspas.2021.658229

Galaxy morphological classification in deep-wide surveys via unsupervised machine learning

G Martin, S Kaviraj, A Hocking, S C Read and J E Geach
Monthly Notices of the Royal Astronomical Society 491 (1) 1408 (2020)
https://doi.org/10.1093/mnras/stz3006

Photometric redshift estimation using ExtraTreesRegressor: Galaxies and quasars from low to very high redshifts

Moonzarin Reza and Mohammad Ariful Haque
Astrophysics and Space Science 365 (3) (2020)
https://doi.org/10.1007/s10509-020-03758-w

Groundwater Prediction Using Machine-Learning Tools

Eslam A. Hussein, Christopher Thron, Mehrdad Ghaziasgar, Antoine Bagula and Mattia Vaccari
Algorithms 13 (11) 300 (2020)
https://doi.org/10.3390/a13110300

Three-dimensional episodic model of star formation in galaxies in the presence of dissipation

Sailajananda Mukherjee, Tanuka Chattopadhyay and Sukanta Das
Monthly Notices of the Royal Astronomical Society 494 (3) 4098 (2020)
https://doi.org/10.1093/mnras/staa829

A Comparison of Photometric Redshift Techniques for Large Radio Surveys

Ray P. Norris, M. Salvato, G. Longo, et al.
Publications of the Astronomical Society of the Pacific 131 (1004) 108004 (2019)
https://doi.org/10.1088/1538-3873/ab0f7b

Probabilistic Random Forest: A Machine Learning Algorithm for Noisy Data Sets

Itamar Reis, Dalya Baron and Sahar Shahaf
The Astronomical Journal 157 (1) 16 (2019)
https://doi.org/10.3847/1538-3881/aaf101

Photometric redshifts for X-ray-selected active galactic nuclei in the eROSITA era

M Brescia, M Salvato, S Cavuoti, et al.
Monthly Notices of the Royal Astronomical Society 489 (1) 663 (2019)
https://doi.org/10.1093/mnras/stz2159

Foreword to the Focus Issue on Machine Intelligence in Astronomy and Astrophysics

Giuseppe Longo, Erzsébet Merényi and Peter Tiňo
Publications of the Astronomical Society of the Pacific 131 (1004) 100101 (2019)
https://doi.org/10.1088/1538-3873/ab2743

Unsupervised Classification of Galaxies. I. Independent Component Analysis Feature Selection

Tanuka Chattopadhyay, Didier Fraix-Burnet and Saptarshi Mondal
Publications of the Astronomical Society of the Pacific 131 (1004) 108010 (2019)
https://doi.org/10.1088/1538-3873/aaf7c6

Data Analytics and Management in Data Intensive Domains

Massimo Brescia, Stefano Cavuoti, Valeria Amaro, et al.
Communications in Computer and Information Science, Data Analytics and Management in Data Intensive Domains 822 61 (2018)
https://doi.org/10.1007/978-3-319-96553-6_5