Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Euclid preparation

M. Selwood, S. Fotopoulou, M. N. Bremer, L. Bisigello, H. Landt, E. Bañados, G. Zamorani, F. Shankar, D. Stern, E. Lusso, L. Spinoglio, V. Allevato, F. Ricci, A. Feltre, F. Mannucci, M. Salvato, R. A. A. Bowler, M. Mignoli, D. Vergani, F. La Franca, A. Amara, S. Andreon, N. Auricchio, M. Baldi, S. Bardelli, et al.
Astronomy & Astrophysics 693 A250 (2025)
https://doi.org/10.1051/0004-6361/202450894

DAG Teleskobu için Üretilen Simülasyon Görüntüleriyle Fotometrik Kırmızıya Kaymaların Belirlenmesi

Süleyman Fişek and Sinan Aliş
Turkish Journal of Astronomy and Astrophysics 6 (1) 1 (2025)
https://doi.org/10.55064/tjaa.1613991

Imputation of missing photometric data and photometric redshift estimation for CSST

Zhijian Luo, Zhirui Tang, Zhu Chen, Liping Fu, Wei Du, Shaohua Zhang, Yan Gong, Chenggang Shu, Junhao Lu, Yicheng Li, Xian-Min Meng, Xingchen Zhou and Zuhui Fan
Monthly Notices of the Royal Astronomical Society 531 (3) 3539 (2024)
https://doi.org/10.1093/mnras/stae1397

Photometric redshift estimation for CSST survey with LSTM neural networks

Zhijian Luo, Yicheng Li, Junhao Lu, Zhu Chen, Liping Fu, Shaohua Zhang, Hubing Xiao, Wei Du, Yan Gong, Chenggang Shu, Wenwen Ma, Xianmin Meng, Xingchen Zhou and Zuhui Fan
Monthly Notices of the Royal Astronomical Society 535 (2) 1844 (2024)
https://doi.org/10.1093/mnras/stae2446

Supervised star, galaxy, and QSO classification with sharpened dimensionality reduction

M. A. A. Lourens, S. C. Trager, Y. Kim, A. C. Telea and J. B. T. M. Roerdink
Astronomy & Astrophysics 690 A224 (2024)
https://doi.org/10.1051/0004-6361/202450214

Machine learning applications in studies of the physical properties of active galactic nuclei based on photometric observations

Sarah Mechbal, Markus Ackermann and Marek Kowalski
Astronomy & Astrophysics 685 A107 (2024)
https://doi.org/10.1051/0004-6361/202346557

Fine-grained photometric classification using multi-model fusion method with redshift estimation

Peng Cheng, Zhihui Liu, Fatemeh Zahra Zeraatgri and Liquan Mei
Journal of High Energy Astrophysics 43 198 (2024)
https://doi.org/10.1016/j.jheap.2024.07.008

PICZL: Image-based photometric redshifts for AGN

W. Roster, M. Salvato, S. Krippendorf, A. Saxena, R. Shirley, J. Buchner, J. Wolf, T. Dwelly, F. E. Bauer, J. Aird, C. Ricci, R. J. Assef, S. F. Anderson, X. Liu, A. Merloni, J. Weller and K. Nandra
Astronomy & Astrophysics 692 A260 (2024)
https://doi.org/10.1051/0004-6361/202452361

Machine learning-based photometric classification of galaxies, quasars, emission-line galaxies, and stars

Fatemeh Zahra Zeraatgari, Fatemeh Hafezianzadeh, Yanxia Zhang, Liquan Mei, Ashraf Ayubinia, Amin Mosallanezhad and Jingyi Zhang
Monthly Notices of the Royal Astronomical Society 527 (3) 4677 (2023)
https://doi.org/10.1093/mnras/stad3436

Data-driven templates with dictionary learning and sparse representations for photometric redshift estimation

J. Frontera-Pons, F. Sureau, J. Bobin and M. Kilbinger
Astronomy and Computing 44 100735 (2023)
https://doi.org/10.1016/j.ascom.2023.100735

Estimating photometric redshift from mock flux for CSST survey by using weighted Random Forest

Junhao Lu, Zhijian Luo, Zhu Chen, Liping Fu, Wei Du, Yan Gong, Yicheng Li, Xian-Min Meng, Zhirui Tang, Shaohua Zhang, Chenggang Shu, Xingchen Zhou and Zuhui Fan
Monthly Notices of the Royal Astronomical Society 527 (4) 12140 (2023)
https://doi.org/10.1093/mnras/stad3976

Improving machine learning-derived photometric redshifts and physical property estimates using unlabelled observations

A Humphrey, P A C Cunha, A Paulino-Afonso, et al.
Monthly Notices of the Royal Astronomical Society 520 (1) 305 (2023)
https://doi.org/10.1093/mnras/stac3596

ulisse: A tool for one-shot sky exploration and its application for detection of active galactic nuclei

Lars Doorenbos, Olena Torbaniuk, Stefano Cavuoti, et al.
Astronomy & Astrophysics 666 A171 (2022)
https://doi.org/10.1051/0004-6361/202243900

Predicting the Redshift of Gamma-Ray Loud AGNs Using Supervised Machine Learning. II

Aditya Narendra, Spencer James Gibson, Maria Giovanna Dainotti, Malgorzata Bogdan, Agnieszka Pollo, Ioannis Liodakis, Artem Poliszczuk and Enrico Rinaldi
The Astrophysical Journal Supplement Series 259 (2) 55 (2022)
https://doi.org/10.3847/1538-4365/ac545a

Using Multivariate Imputation by Chained Equations to Predict Redshifts of Active Galactic Nuclei

Spencer James Gibson, Aditya Narendra, Maria Giovanna Dainotti, et al.
Frontiers in Astronomy and Space Sciences 9 (2022)
https://doi.org/10.3389/fspas.2022.836215

Predicting the Redshift of γ-Ray-loud AGNs Using Supervised Machine Learning

Maria Giovanna Dainotti, Malgorzata Bogdan, Aditya Narendra, Spencer James Gibson, Blazej Miasojedow, Ioannis Liodakis, Agnieszka Pollo, Trevor Nelson, Kamil Wozniak, Zooey Nguyen and Johan Larrson
The Astrophysical Journal 920 (2) 118 (2021)
https://doi.org/10.3847/1538-4357/ac1748

Photometric Redshifts With Machine Learning, Lights and Shadows on a Complex Data Science Use Case

Massimo Brescia, Stefano Cavuoti, Oleksandra Razim, et al.
Frontiers in Astronomy and Space Sciences 8 (2021)
https://doi.org/10.3389/fspas.2021.658229

Identifying AGN Host Galaxies by Machine Learning with HSC+WISE

Yu-Yen Chang, Bau-Ching Hsieh, Wei-Hao Wang, Yen-Ting Lin, Chen-Fatt Lim, Yoshiki Toba, Yuxing Zhong and Siou-Yu Chang
The Astrophysical Journal 920 (2) 68 (2021)
https://doi.org/10.3847/1538-4357/ac167c

Estimation of Photometric Redshifts. I. Machine-learning Inference for Pan-STARRS1 Galaxies Using Neural Networks

Joongoo Lee and Min-Su Shin
The Astronomical Journal 162 (6) 297 (2021)
https://doi.org/10.3847/1538-3881/ac2e96

Z-Sequence: photometric redshift predictions for galaxy clusters with sequential random k-nearest neighbours

Matthew C Chan and John P Stott
Monthly Notices of the Royal Astronomical Society 503 (4) 6078 (2021)
https://doi.org/10.1093/mnras/stab858

The effect of phased recurrent units in the classification of multiple catalogues of astronomical light curves

C Donoso-Oliva, G Cabrera-Vives, P Protopapas, R Carrasco-Davis and P A Estevez
Monthly Notices of the Royal Astronomical Society 505 (4) 6069 (2021)
https://doi.org/10.1093/mnras/stab1598

AstronomicAL: an interactive dashboard for visualisation, integration and classification of data with Active Learning

Grant Stevens, Sotiria Fotopoulou, Malcolm Bremer and Oliver Ray
Journal of Open Source Software 6 (65) 3635 (2021)
https://doi.org/10.21105/joss.03635

Identifying and Repairing Catastrophic Errors in Galaxy Properties Using Dimensionality Reduction

Beryl Hovis-Afflerbach, Charles L. Steinhardt, Daniel Masters and Mara Salvato
The Astrophysical Journal 908 (2) 148 (2021)
https://doi.org/10.3847/1538-4357/abd329

Photometric selection and redshifts for quasars in the Kilo-Degree Survey Data Release 4

S. J. Nakoneczny, M. Bilicki, A. Pollo, et al.
Astronomy & Astrophysics 649 A81 (2021)
https://doi.org/10.1051/0004-6361/202039684

Improved photometric redshifts with colour-constrained galaxy templates for future wide-area surveys

Bomee Lee and Ranga-Ram Chary
Monthly Notices of the Royal Astronomical Society 497 (2) 1935 (2020)
https://doi.org/10.1093/mnras/staa2100

Augmenting machine learning photometric redshifts with Gaussian mixture models

P W Hatfield, I A Almosallam, M J Jarvis, et al.
Monthly Notices of the Royal Astronomical Society 498 (4) 5498 (2020)
https://doi.org/10.1093/mnras/staa2741

Photometric redshifts for X-ray-selected active galactic nuclei in the eROSITA era

M Brescia, M Salvato, S Cavuoti, et al.
Monthly Notices of the Royal Astronomical Society 489 (1) 663 (2019)
https://doi.org/10.1093/mnras/stz2159

A Comparison of Photometric Redshift Techniques for Large Radio Surveys

Ray P. Norris, M. Salvato, G. Longo, et al.
Publications of the Astronomical Society of the Pacific 131 (1004) 108004 (2019)
https://doi.org/10.1088/1538-3873/ab0f7b

Horizon-AGN virtual observatory – 1. SED-fitting performance and forecasts for future imaging surveys

A Slyz, M Salvato, H J McCracken, et al.
Monthly Notices of the Royal Astronomical Society 486 (4) 5104 (2019)
https://doi.org/10.1093/mnras/stz1054

Catalogues of active galactic nuclei from Gaia and unWISE data

Yiping Shu, Sergey E Koposov, N Wyn Evans, et al.
Monthly Notices of the Royal Astronomical Society 489 (4) 4741 (2019)
https://doi.org/10.1093/mnras/stz2487