Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Radio Galaxy Zoo data release 1: 100185 radio source classifications from the FIRST and ATLAS surveys

O Ivy Wong, A F Garon, M J Alger, L Rudnick, S S Shabala, K W Willett, J K Banfield, H Andernach, R P Norris, J Swan, M J Hardcastle, C J Lintott, S V White, N Seymour, A D Kapińska, H Tang, B D Simmons and K Schawinski
Monthly Notices of the Royal Astronomical Society 536 (4) 3488 (2025)
https://doi.org/10.1093/mnras/stae2790

WISE2MBH: a scaling-based algorithm for probing supermassive black hole masses through WISE catalogues

J Hernández-Yévenes, N Nagar, V Arratia and T H Jarrett
Monthly Notices of the Royal Astronomical Society 531 (4) 4503 (2024)
https://doi.org/10.1093/mnras/stae1372

A machine learning approach to estimate mid-infrared fluxes from WISE data

Nuria Fonseca-Bonilla, Luis Cerdán, Alberto Noriega-Crespo and Amaya Moro-Martín
Astronomy & Astrophysics 691 A271 (2024)
https://doi.org/10.1051/0004-6361/202450274

Wide Area VISTA Extra-galactic Survey (WAVES): unsupervised star-galaxy separation on the WAVES-Wide photometric input catalogue using UMAP and hdbscan

Todd L Cook, Behnood Bandi, Sam Philipsborn, Jon Loveday, Sabine Bellstedt, Simon P Driver, Aaron S G Robotham, Maciej Bilicki, Gursharanjit Kaur, Elmo Tempel, Ivan Baldry, Daniel Gruen, Marcella Longhetti, Angela Iovino, Benne W Holwerda and Ricardo Demarco
Monthly Notices of the Royal Astronomical Society 535 (3) 2129 (2024)
https://doi.org/10.1093/mnras/stae2389

Supervised star, galaxy, and QSO classification with sharpened dimensionality reduction

M. A. A. Lourens, S. C. Trager, Y. Kim, A. C. Telea and J. B. T. M. Roerdink
Astronomy & Astrophysics 690 A224 (2024)
https://doi.org/10.1051/0004-6361/202450214

Machine learning-based photometric classification of galaxies, quasars, emission-line galaxies, and stars

Fatemeh Zahra Zeraatgari, Fatemeh Hafezianzadeh, Yanxia Zhang, Liquan Mei, Ashraf Ayubinia, Amin Mosallanezhad and Jingyi Zhang
Monthly Notices of the Royal Astronomical Society 527 (3) 4677 (2023)
https://doi.org/10.1093/mnras/stad3436

Measuring the Hubble constant with cosmic chronometers: a machine learning approach

Carlos Bengaly, Maria Aldinez Dantas, Luciano Casarini and Jailson Alcaniz
The European Physical Journal C 83 (6) (2023)
https://doi.org/10.1140/epjc/s10052-023-11734-1

Photometric selection and redshifts for quasars in the Kilo-Degree Survey Data Release 4

S. J. Nakoneczny, M. Bilicki, A. Pollo, et al.
Astronomy & Astrophysics 649 A81 (2021)
https://doi.org/10.1051/0004-6361/202039684

On the discovery of stars, quasars, and galaxies in the Southern Hemisphere with S-PLUS DR2

L Nakazono, C Mendes de Oliveira, N S T Hirata, et al.
Monthly Notices of the Royal Astronomical Society 507 (4) 5847 (2021)
https://doi.org/10.1093/mnras/stab1835

Spectroscopic observations of the machine-learning selected anomaly catalogue from the AllWISE Sky Survey

A. Solarz, R. Thomas, F. M. Montenegro-Montes, et al.
Astronomy & Astrophysics 642 A103 (2020)
https://doi.org/10.1051/0004-6361/202038439

Active galactic nucleus selection in the AKARI NEP-Deep field with the fuzzy support vector machine algorithm

Artem Poliszczuk, Aleksandra Solarz, Agnieszka Pollo, Maciej Bilicki, Tsutomu T Takeuchi, Hideo Matsuhara, Tomotsugu Goto, Toshinobu Takagi, Takehiko Wada, Yoichi Ohyama, Hitoshi Hanami, Takamitsu Miyaji, Nagisa Oi, Matthew Malkan, Kazumi Murata, Helen Kim and Jorge Díaz Tello
Publications of the Astronomical Society of Japan 71 (3) (2019)
https://doi.org/10.1093/pasj/psz043

A classifier to detect elusive astronomical objects through photometry

Rama Krishna Sai S Gorthi, S K Ghosh, S Vig and Bhavana D.
Monthly Notices of the Royal Astronomical Society 488 (2) 2263 (2019)
https://doi.org/10.1093/mnras/stz1823

Machine Learning Applied to Star–Galaxy–QSO Classification and Stellar Effective Temperature Regression

Yu Bai, JiFeng Liu, Song Wang and Fan Yang
The Astronomical Journal 157 (1) 9 (2019)
https://doi.org/10.3847/1538-3881/aaf009

Identification of Young Stellar Object candidates in the Gaia DR2 x AllWISE catalogue with machine learning methods

G Marton, P Ábrahám, E Szegedi-Elek, et al.
Monthly Notices of the Royal Astronomical Society 487 (2) 2522 (2019)
https://doi.org/10.1093/mnras/stz1301

Applications of machine-learning algorithms for infrared colour selection of Galactic Wolf–Rayet stars

Giuseppe Morello, P. W. Morris, S. D. Van Dyk, A. P. Marston and J. C. Mauerhan
Monthly Notices of the Royal Astronomical Society 473 (2) 2565 (2018)
https://doi.org/10.1093/mnras/stx2474

The dipole anisotropy of AllWISE galaxies

M Rameez, R Mohayaee, S Sarkar and J Colin
Monthly Notices of the Royal Astronomical Society 477 (2) 1772 (2018)
https://doi.org/10.1093/mnras/sty619

A Machine-learning Method for Identifying Multiwavelength Counterparts of Submillimeter Galaxies: Training and Testing Using AS2UDS and ALESS

Fang Xia An, S. M. Stach, Ian Smail, A. M. Swinbank, O. Almaini, C. Simpson, W. Hartley, D. T. Maltby, R. J. Ivison, V. Arumugam, J. L. Wardlow, E. A. Cooke, B. Gullberg, A. P. Thomson, Chian-Chou Chen, J. M. Simpson, J. E. Geach, D. Scott, J. S. Dunlop, D. Farrah, P. van der Werf, A. W. Blain, C. Conselice, M. Michałowski, S. C. Chapman and K. E. K. Coppin
The Astrophysical Journal 862 (2) 101 (2018)
https://doi.org/10.3847/1538-4357/aacdaa

On the use of logistic regression for stellar classification

Leire Beitia-Antero, Javier Yáñez and Ana I. Gómez de Castro
Experimental Astronomy 45 (3) 379 (2018)
https://doi.org/10.1007/s10686-018-9591-4

The 2-degree Field Lensing Survey: photometric redshifts from a large new training sample tor < 19.5

C. Wolf, A. S. Johnson, M. Bilicki, et al.
Monthly Notices of the Royal Astronomical Society 466 (2) 1582 (2017)
https://doi.org/10.1093/mnras/stw3151

The Extremely Luminous Quasar Survey in the SDSS Footprint. I. Infrared-based Candidate Selection

Jan-Torge Schindler, Xiaohui Fan, Ian D. McGreer, Qian Yang, Jin Wu, Linhua Jiang and Richard Green
The Astrophysical Journal 851 (1) 13 (2017)
https://doi.org/10.3847/1538-4357/aa9929

Automated novelty detection in the WISE survey with one-class support vector machines

A. Solarz, M. Bilicki, M. Gromadzki, et al.
Astronomy & Astrophysics 606 A39 (2017)
https://doi.org/10.1051/0004-6361/201730968

Galaxy and Mass Assembly (GAMA): Exploring the WISE Web in G12

T. H. Jarrett, M. E. Cluver, C. Magoulas, M. Bilicki, M. Alpaslan, J. Bland-Hawthorn, S. Brough, M. J. I. Brown, S. Croom, S. Driver, B. W. Holwerda, A. M. Hopkins, J. Loveday, P. Norberg, J. A. Peacock, C. C. Popescu, E. M. Sadler, E. N. Taylor, R. J. Tuffs and L. Wang
The Astrophysical Journal 836 (2) 182 (2017)
https://doi.org/10.3847/1538-4357/836/2/182

The SuperCOSMOS all-sky galaxy catalogue

J. A. Peacock, N. C. Hambly, M. Bilicki, et al.
Monthly Notices of the Royal Astronomical Society 462 (2) 2085 (2016)
https://doi.org/10.1093/mnras/stw1818

Machine-learning identification of galaxies in the WISE × SuperCOSMOS all-sky catalogue

T. Krakowski, K. Małek, M. Bilicki, et al.
Astronomy & Astrophysics 596 A39 (2016)
https://doi.org/10.1051/0004-6361/201629165