Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Euclid preparation

I. Kovačić, M. Baes, A. Nersesian, N. Andreadis, L. Nemani, Abdurro’uf, L. Bisigello, M. Bolzonella, C. Tortora, A. van der Wel, S. Cavuoti, C. J. Conselice, A. Enia, L. K. Hunt, P. Iglesias-Navarro, E. Iodice, J. H. Knapen, F. R. Marleau, O. Müller, R. F. Peletier, J. Román, R. Ragusa, P. Salucci, T. Saifollahi, M. Scodeggio, et al.
Astronomy & Astrophysics 695 A284 (2025)
https://doi.org/10.1051/0004-6361/202453111

Machine Learning–based Photometric Redshifts for Galaxies in the North Ecliptic Pole Wide Field: Catalogs of Spectroscopic and Photometric Redshifts

Taewan Kim, Jubee Sohn, Ho Seong Hwang, Simon C.-C. Ho, Denis Burgarella, Tomotsugu Goto, Tetsuya Hashimoto, Woong-Seob Jeong, Seong Jin Kim, Matthew A. Malkan, Takamitsu Miyaji, Nagisa Oi, Hyunjin Shim, Hyunmi Song, Narae Hwang and Byeong-Gon Park
The Astrophysical Journal Supplement Series 277 (2) 41 (2025)
https://doi.org/10.3847/1538-4365/adb42a

Dark Energy Survey Deep Field photometric redshift performance and training incompleteness assessment

L. Toribio San Cipriano, J. De Vicente, I. Sevilla-Noarbe, W. G. Hartley, J. Myles, A. Amon, G. M. Bernstein, A. Choi, K. Eckert, R. A. Gruendl, I. Harrison, E. Sheldon, B. Yanny, M. Aguena, S. S. Allam, O. Alves, D. Bacon, D. Brooks, A. Campos, A. Carnero Rosell, J. Carretero, F. J. Castander, C. Conselice, L. N. da Costa, M. E. S. Pereira, et al.
Astronomy & Astrophysics 686 A38 (2024)
https://doi.org/10.1051/0004-6361/202348956

hayate: photometric redshift estimation by hybridizing machine learning with template fitting

Shingo Tanigawa, K Glazebrook, C Jacobs, I Labbe and A K Qin
Monthly Notices of the Royal Astronomical Society 530 (2) 2012 (2024)
https://doi.org/10.1093/mnras/stae411

Measuring photometric redshifts for high-redshift radio source surveys

K. J. Luken, R. P. Norris, X. R. Wang, L. A. F. Park, Y. Guo and M. D. Filipović
Publications of the Astronomical Society of Australia 40 (2023)
https://doi.org/10.1017/pasa.2023.39

Estimating galaxy redshift in radio-selected datasets using machine learning

K.J. Luken, R.P. Norris, L.A.F. Park, X.R. Wang and M.D. Filipović
Astronomy and Computing 39 100557 (2022)
https://doi.org/10.1016/j.ascom.2022.100557

PhotoRedshift-MML: A multimodal machine learning method for estimating photometric redshifts of quasars

Shuxin Hong, Zhiqiang Zou, A-Li Luo, et al.
Monthly Notices of the Royal Astronomical Society 518 (4) 5049 (2022)
https://doi.org/10.1093/mnras/stac3259

Improving the reliability of photometric redshift with machine learning

Oleksandra Razim, Stefano Cavuoti, Massimo Brescia, et al.
Monthly Notices of the Royal Astronomical Society 507 (4) 5034 (2021)
https://doi.org/10.1093/mnras/stab2334

Photometric redshift estimation of BASS DR3 quasars by machine learning

Changhua Li, Yanxia Zhang, Chenzhou Cui, et al.
Monthly Notices of the Royal Astronomical Society 509 (2) 2289 (2021)
https://doi.org/10.1093/mnras/stab3165

Photometric Redshifts With Machine Learning, Lights and Shadows on a Complex Data Science Use Case

Massimo Brescia, Stefano Cavuoti, Oleksandra Razim, et al.
Frontiers in Astronomy and Space Sciences 8 (2021)
https://doi.org/10.3389/fspas.2021.658229

Surveying the reach and maturity of machine learning and artificial intelligence in astronomy

Christopher J. Fluke and Colin Jacobs
WIREs Data Mining and Knowledge Discovery 10 (2) (2020)
https://doi.org/10.1002/widm.1349

Machine-learning computation of distance modulus for local galaxies

A. A. Elyiv, O. V. Melnyk, I. B. Vavilova, D. V. Dobrycheva and V. E. Karachentseva
Astronomy & Astrophysics 635 A124 (2020)
https://doi.org/10.1051/0004-6361/201936883

Astroinformatics-based search for globular clusters in the Fornax Deep Survey

G Angora, M Brescia, S Cavuoti, et al.
Monthly Notices of the Royal Astronomical Society 490 (3) 4080 (2019)
https://doi.org/10.1093/mnras/stz2801

A Comparison of Photometric Redshift Techniques for Large Radio Surveys

Ray P. Norris, M. Salvato, G. Longo, et al.
Publications of the Astronomical Society of the Pacific 131 (1004) 108004 (2019)
https://doi.org/10.1088/1538-3873/ab0f7b

Photometric redshifts for X-ray-selected active galactic nuclei in the eROSITA era

M Brescia, M Salvato, S Cavuoti, et al.
Monthly Notices of the Royal Astronomical Society 489 (1) 663 (2019)
https://doi.org/10.1093/mnras/stz2159

Galaxies image classification using artificial bee colony based on orthogonal Gegenbauer moments

Mohamed Abd Elaziz, Khalid M. Hosny and I. M. Selim
Soft Computing 23 (19) 9573 (2019)
https://doi.org/10.1007/s00500-018-3521-2

Preliminary Results of Using k-nearest-neighbor Regression to Estimate the Redshift of Radio-selected Data Sets

Kieran J. Luken, Ray P. Norris and Laurence A. F. Park
Publications of the Astronomical Society of the Pacific 131 (1004) 108003 (2019)
https://doi.org/10.1088/1538-3873/aaea17

A new strategy for estimating photometric redshifts of quasars

Yan-Xia Zhang, Jing-Yi Zhang, Xin Jin and Yong-Heng Zhao
Research in Astronomy and Astrophysics 19 (12) 175 (2019)
https://doi.org/10.1088/1674-4527/19/12/175

Statistical analysis of probability density functions for photometric redshifts through the KiDS-ESO-DR3 galaxies

V Amaro, S Cavuoti, M Brescia, et al.
Monthly Notices of the Royal Astronomical Society 482 (3) 3116 (2019)
https://doi.org/10.1093/mnras/sty2922

An automatic taxonomy of galaxy morphology using unsupervised machine learning

Alex Hocking, James E. Geach, Yi Sun and Neil Davey
Monthly Notices of the Royal Astronomical Society 473 (1) 1108 (2018)
https://doi.org/10.1093/mnras/stx2351

Data Analytics and Management in Data Intensive Domains

Massimo Brescia, Stefano Cavuoti, Valeria Amaro, et al.
Communications in Computer and Information Science, Data Analytics and Management in Data Intensive Domains 822 61 (2018)
https://doi.org/10.1007/978-3-319-96553-6_5

METAPHOR: a machine-learning-based method for the probability density estimation of photometric redshifts

S. Cavuoti, V. Amaro, M. Brescia, et al.
Monthly Notices of the Royal Astronomical Society 465 (2) 1959 (2017)
https://doi.org/10.1093/mnras/stw2930

A cooperative approach among methods for photometric redshifts estimation: an application to KiDS data

S. Cavuoti, C. Tortora, M. Brescia, et al.
Monthly Notices of the Royal Astronomical Society 466 (2) 2039 (2017)
https://doi.org/10.1093/mnras/stw3208

METAPHOR: Probability density estimation for machine learning based photometric redshifts

V. Amaro, S. Cavuoti, M. Brescia, et al.
Proceedings of the International Astronomical Union 12 (S325) 197 (2016)
https://doi.org/10.1017/S1743921317002186

The first and second data releases of the Kilo-Degree Survey

Jelte T. A. de Jong, Gijs A. Verdoes Kleijn, Danny R. Boxhoorn, et al.
Astronomy & Astrophysics 582 A62 (2015)
https://doi.org/10.1051/0004-6361/201526601

Automated physical classification in the SDSS DR10. A catalogue of candidate quasars

M. Brescia, S. Cavuoti and G. Longo
Monthly Notices of the Royal Astronomical Society 450 (4) 3893 (2015)
https://doi.org/10.1093/mnras/stv854

Using neural networks to estimate redshift distributions. An application to CFHTLenS

Christopher Bonnett
Monthly Notices of the Royal Astronomical Society 449 (1) 1043 (2015)
https://doi.org/10.1093/mnras/stv230

Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2

S. Cavuoti, M. Brescia, C. Tortora, et al.
Monthly Notices of the Royal Astronomical Society 452 (3) 3100 (2015)
https://doi.org/10.1093/mnras/stv1496

Photometric classification of emission line galaxies with machine-learning methods

Stefano Cavuoti, Massimo Brescia, Raffaele D'Abrusco, Giuseppe Longo and Maurizio Paolillo
Monthly Notices of the Royal Astronomical Society 437 (1) 968 (2014)
https://doi.org/10.1093/mnras/stt1961

TWO MICRON ALL SKY SURVEY PHOTOMETRIC REDSHIFT CATALOG: A COMPREHENSIVE THREE-DIMENSIONAL CENSUS OF THE WHOLE SKY

Maciej Bilicki, Thomas H. Jarrett, John A. Peacock, Michelle E. Cluver and Louise Steward
The Astrophysical Journal Supplement Series 210 (1) 9 (2013)
https://doi.org/10.1088/0067-0049/210/1/9

CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of thez= 0.44 galaxy cluster MACS J1206.2-0847

A. Biviano, P. Rosati, I. Balestra, et al.
Astronomy & Astrophysics 558 A1 (2013)
https://doi.org/10.1051/0004-6361/201321955

TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests

Matias Carrasco Kind and Robert J. Brunner
Monthly Notices of the Royal Astronomical Society 432 (2) 1483 (2013)
https://doi.org/10.1093/mnras/stt574