The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
This article has been cited by the following article(s):
Euclid preparation
I. Kovačić, M. Baes, A. Nersesian, N. Andreadis, L. Nemani, Abdurro’uf, L. Bisigello, M. Bolzonella, C. Tortora, A. van der Wel, S. Cavuoti, C. J. Conselice, A. Enia, L. K. Hunt, P. Iglesias-Navarro, E. Iodice, J. H. Knapen, F. R. Marleau, O. Müller, R. F. Peletier, J. Román, R. Ragusa, P. Salucci, T. Saifollahi, M. Scodeggio, et al. Astronomy & Astrophysics 695 A284 (2025) https://doi.org/10.1051/0004-6361/202453111
Machine Learning–based Photometric Redshifts for Galaxies in the North Ecliptic Pole Wide Field: Catalogs of Spectroscopic and Photometric Redshifts
Taewan Kim, Jubee Sohn, Ho Seong Hwang, Simon C.-C. Ho, Denis Burgarella, Tomotsugu Goto, Tetsuya Hashimoto, Woong-Seob Jeong, Seong Jin Kim, Matthew A. Malkan, Takamitsu Miyaji, Nagisa Oi, Hyunjin Shim, Hyunmi Song, Narae Hwang and Byeong-Gon Park The Astrophysical Journal Supplement Series 277(2) 41 (2025) https://doi.org/10.3847/1538-4365/adb42a
Dark Energy Survey Deep Field photometric redshift performance and training incompleteness assessment
L. Toribio San Cipriano, J. De Vicente, I. Sevilla-Noarbe, W. G. Hartley, J. Myles, A. Amon, G. M. Bernstein, A. Choi, K. Eckert, R. A. Gruendl, I. Harrison, E. Sheldon, B. Yanny, M. Aguena, S. S. Allam, O. Alves, D. Bacon, D. Brooks, A. Campos, A. Carnero Rosell, J. Carretero, F. J. Castander, C. Conselice, L. N. da Costa, M. E. S. Pereira, et al. Astronomy & Astrophysics 686 A38 (2024) https://doi.org/10.1051/0004-6361/202348956
hayate: photometric redshift estimation by hybridizing machine learning with template fitting
Shingo Tanigawa, K Glazebrook, C Jacobs, I Labbe and A K Qin Monthly Notices of the Royal Astronomical Society 530(2) 2012 (2024) https://doi.org/10.1093/mnras/stae411
Measuring photometric redshifts for high-redshift radio source surveys
K. J. Luken, R. P. Norris, X. R. Wang, L. A. F. Park, Y. Guo and M. D. Filipović Publications of the Astronomical Society of Australia 40 (2023) https://doi.org/10.1017/pasa.2023.39
Estimating galaxy redshift in radio-selected datasets using machine learning
Improving the reliability of photometric redshift with machine learning
Oleksandra Razim, Stefano Cavuoti, Massimo Brescia, et al. Monthly Notices of the Royal Astronomical Society 507(4) 5034 (2021) https://doi.org/10.1093/mnras/stab2334
Photometric redshift estimation of BASS DR3 quasars by machine learning
Changhua Li, Yanxia Zhang, Chenzhou Cui, et al. Monthly Notices of the Royal Astronomical Society 509(2) 2289 (2021) https://doi.org/10.1093/mnras/stab3165
Photometric Redshifts With Machine Learning, Lights and Shadows on a Complex Data Science Use Case
A Comparison of Photometric Redshift Techniques for Large Radio Surveys
Ray P. Norris, M. Salvato, G. Longo, et al. Publications of the Astronomical Society of the Pacific 131(1004) 108004 (2019) https://doi.org/10.1088/1538-3873/ab0f7b
Photometric redshifts for X-ray-selected active galactic nuclei in the eROSITA era
Preliminary Results of Using k-nearest-neighbor Regression to Estimate the Redshift of Radio-selected Data Sets
Kieran J. Luken, Ray P. Norris and Laurence A. F. Park Publications of the Astronomical Society of the Pacific 131(1004) 108003 (2019) https://doi.org/10.1088/1538-3873/aaea17
A new strategy for estimating photometric redshifts of quasars
An automatic taxonomy of galaxy morphology using unsupervised machine learning
Alex Hocking, James E. Geach, Yi Sun and Neil Davey Monthly Notices of the Royal Astronomical Society 473(1) 1108 (2018) https://doi.org/10.1093/mnras/stx2351
Data Analytics and Management in Data Intensive Domains
Massimo Brescia, Stefano Cavuoti, Valeria Amaro, et al. Communications in Computer and Information Science, Data Analytics and Management in Data Intensive Domains 822 61 (2018) https://doi.org/10.1007/978-3-319-96553-6_5
METAPHOR: a machine-learning-based method for the probability density estimation of photometric redshifts
Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2
S. Cavuoti, M. Brescia, C. Tortora, et al. Monthly Notices of the Royal Astronomical Society 452(3) 3100 (2015) https://doi.org/10.1093/mnras/stv1496
Photometric classification of emission line galaxies with machine-learning methods
Stefano Cavuoti, Massimo Brescia, Raffaele D'Abrusco, Giuseppe Longo and Maurizio Paolillo Monthly Notices of the Royal Astronomical Society 437(1) 968 (2014) https://doi.org/10.1093/mnras/stt1961
A catalogue of photometric redshifts for the SDSS-DR9 galaxies
TWO MICRON ALL SKY SURVEY PHOTOMETRIC REDSHIFT CATALOG: A COMPREHENSIVE THREE-DIMENSIONAL CENSUS OF THE WHOLE SKY
Maciej Bilicki, Thomas H. Jarrett, John A. Peacock, Michelle E. Cluver and Louise Steward The Astrophysical Journal Supplement Series 210(1) 9 (2013) https://doi.org/10.1088/0067-0049/210/1/9
CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of thez= 0.44 galaxy cluster MACS J1206.2-0847