Open Access
Issue
A&A
Volume 698, May 2025
Article Number A148
Number of page(s) 19
Section Cosmology (including clusters of galaxies)
DOI https://doi.org/10.1051/0004-6361/202452734
Published online 11 June 2025
  1. Algera, H. S. B., van der Vlugt, D., Hodge, J. A., et al. 2020, ApJ, 903, 139 [Google Scholar]
  2. Astropy Collaboration (Robitaille, T. P., et al.) 2013, A&A, 558, A33 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  3. Astropy Collaboration (Price-Whelan, A. M., et al.) 2018, AJ, 156, 123 [Google Scholar]
  4. Astropy Collaboration (Price-Whelan, A. M., et al.) 2022, ApJ, 935, 167 [NASA ADS] [CrossRef] [Google Scholar]
  5. Berlind, A. A., & Weinberg, D. H. 2002, ApJ, 575, 587 [Google Scholar]
  6. Bernardeau, F., Colombi, S., Gaztañaga, E., & Scoccimarro, R. 2002, Phys. Rep., 367, 1 [Google Scholar]
  7. Best, P. N., Kondapally, R., Williams, W. L., et al. 2023, MNRAS, 523, 1729 [NASA ADS] [CrossRef] [Google Scholar]
  8. Betancort-Rijo, J. 2000, J. Sqtat. Phys., 98, 917 [Google Scholar]
  9. Bhardwaj, N., Schwarz, D. J., Hale, C. L., et al. 2024, A&A, 692, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  10. Blake, C., & Wall, J. 2002a, MNRAS, 337, 993 [NASA ADS] [CrossRef] [Google Scholar]
  11. Blake, C., & Wall, J. 2002b, MNRAS, 329, L37 [Google Scholar]
  12. Böhme, L., Schwarz, D. J., de Gasperin, F., Röttgering, H. J. A., & Williams, W. L. 2023, A&A, 674, A189 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  13. Bonnarel, F., Fernique, P., Bienaymé, O., et al. 2000, A&AS, 143, 33 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  14. Boylan-Kolchin, M., Springel, V., White, S. D. M., & Jenkins, A. 2010, MNRAS, 406, 896 [Google Scholar]
  15. Carruthers, P., & Duong-van, M. 1983, Phys. Lett. B, 131, 116 [Google Scholar]
  16. Condon, J. J. 1988, Radio Sources and Cosmology (New York: Springer), 641 [Google Scholar]
  17. Cox, D. R. 1955, J. Roy. Stat. Soc.: Ser. B (Methodol.), 17, 129 [Google Scholar]
  18. Cress, C. M., Helfand, D. J., Becker, R. H., Gregg, M. D., & White, R. L. 1996, ApJ, 473, 7 [NASA ADS] [CrossRef] [Google Scholar]
  19. De Breuck, C., Seymour, N., Stern, D., et al. 2010, ApJ, 725, 36 [NASA ADS] [CrossRef] [Google Scholar]
  20. de Gasperin, F., Williams, W. L., Best, P., et al. 2021, A&A, 648, A104 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  21. de Zotti, G., Massardi, M., Negrello, M., & Wall, J. 2010, A&ARv, 18, 1 [CrossRef] [Google Scholar]
  22. Desjacques, V., & Seljak, U. 2010, Class. Quant. Grav., 27, 124011 [Google Scholar]
  23. Dolfi, A., Branchini, E., Bilicki, M., et al. 2019, A&A, 623, A148 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  24. Duncan, K. J., Kondapally, R., Brown, M. J. I., et al. 2021, A&A, 648, A4 [EDP Sciences] [Google Scholar]
  25. Efron, B. 1979, Ann. Stat., 7, 1 [Google Scholar]
  26. Elizalde, E., & Gaztanaga, E. 1992, MNRAS, 254, 247 [Google Scholar]
  27. Feller, W. 1948, Ann. Math. Stat., 19, 177 [CrossRef] [Google Scholar]
  28. Fernique, P., Boch, T., Donaldson, T., et al. 2014, MOC – HEALPix Multi-Order Coverage map Version 1.0, IVOA Recommendation 02 June 2014 [Google Scholar]
  29. Fisher, R. A., Steven Corbet, A., & Williams, C. B. 1943, J. Animal Ecol., 12, 42 [Google Scholar]
  30. Gelman, A., Carlin, J., Stern, H., & Rubin, D. 2003, Bayesian Data Analysis, Second Edition, Chapman& Hall/CRC Texts in Statistical Science (Taylor& Francis) [Google Scholar]
  31. Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759 [Google Scholar]
  32. Hale, C. L., Jarvis, M. J., Delvecchio, I., et al. 2017, MNRAS, 474, 4133 [Google Scholar]
  33. Hale, C. L., McConnell, D., Thomson, A. J. M., et al. 2021, PASA, 38, e058 [NASA ADS] [CrossRef] [Google Scholar]
  34. Hale, C. L., Schwarz, D. J., Best, P. N., et al. 2024, MNRAS, 527, 6540 [Google Scholar]
  35. Hardcastle, M. J., Horton, M. A., Williams, W. L., et al. 2023, A&A, 678, A151 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  36. Hayat, M. J., & Higgins, M. 2014, J. Nurs. Educ., 53, 207 [Google Scholar]
  37. Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [NASA ADS] [CrossRef] [Google Scholar]
  38. Hurtado-Gil, L., Martínez, V. J., Arnalte-Mur, P., et al. 2017, A&A, 601, A40 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  39. Huynh, M. T., Jackson, C. A., Norris, R. P., & Fernandez-Soto, A. 2008, AJ, 135, 2470 [Google Scholar]
  40. Intema, H. T., Jagannathan, P., Mooley, K. P., & Frail, D. A. 2017, A&A, 598, A78 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  41. Jarvis, M. 2015, Astrophysics Source Code Library [record ascl:1508.007] [Google Scholar]
  42. Jauncey, D. L. 1975, ARA&A, 13, 23 [Google Scholar]
  43. Jeffreys, H. 1961, The Theory of Probability, 3rd edn. (Oxford University Press) [Google Scholar]
  44. Jiménez, E., Contreras, S., Padilla, N., et al. 2019, MNRAS, 490, 3532 [CrossRef] [Google Scholar]
  45. Johnson, N., Kemp, A., & Kotz, S. 2005, Univariate Discrete Distributions, Wiley Series in Probability and Statistics (Wiley) [CrossRef] [Google Scholar]
  46. Klypin, A., Prada, F., Betancort-Rijo, J., & Albareti, F. D. 2018, MNRAS, 481, 4588 [Google Scholar]
  47. Labini, F. S. 2011, Europhys. Lett., 96, 59001 [Google Scholar]
  48. Landy, S. D., & Szalay, A. S. 1993, ApJ, 412, 64 [Google Scholar]
  49. Lindsay, S. N., Jarvis, M. J., Santos, M. G., et al. 2014, MNRAS, 440, 1527 [NASA ADS] [CrossRef] [Google Scholar]
  50. Lista, L. 2017, Statistical Methods for Data Analysis in Particle Physics (Cham: Springer International Publishing), 941 [CrossRef] [Google Scholar]
  51. Magliocchetti, M., Maddox, S. J., Lahav, O., & Wall, J. V. 1999, Looking Deep in the Southern Sky (Berlin: Springer-Verlag), 112 [CrossRef] [Google Scholar]
  52. Magliocchetti, M., Popesso, P., Brusa, M., et al. 2016, MNRAS, 464, 3271 [Google Scholar]
  53. Mandal, S., Prandoni, I., Hardcastle, M. J., et al. 2021, A&A, 648, A5 [EDP Sciences] [Google Scholar]
  54. Mao, Y.-Y., Williamson, M., & Wechsler, R. H. 2015, ApJ, 810, 21 [NASA ADS] [CrossRef] [Google Scholar]
  55. Matthews, A. M., Condon, J. J., Cotton, W. D., & Mauch, T. 2021, ApJ, 909, 193 [NASA ADS] [CrossRef] [Google Scholar]
  56. Mohan, N., & Rafferty, D. 2015, Astrophysics Source Code Library [record ascl:1502.007] [Google Scholar]
  57. Neyman, J., Scott, E. L., & Shane, C. D. 1953, ApJ, 117, 92 [Google Scholar]
  58. Oliver, S., Waddington, I., Gonzalez-Solares, E., et al. 2004, ApJS, 154, 30 [NASA ADS] [CrossRef] [Google Scholar]
  59. Peacock, J. A., & Nicholson, D. 1991, MNRAS, 253, 307 [NASA ADS] [CrossRef] [Google Scholar]
  60. Pearson, K. 1900, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (Taylor& Francis), 50/157 [Google Scholar]
  61. Peebles, P. J. E. 1975, ApJ, 196, 647 [Google Scholar]
  62. Peebles, P. J. E. 1980, The Large-Scale Structure of the Universe (Princeton: Princeton University Press) [Google Scholar]
  63. Peebles, P. J. E., & Wilkinson, D. T. 1968, Phys. Rev., 174, 2168 [NASA ADS] [CrossRef] [Google Scholar]
  64. Pérez, F., & Granger, B. E. 2007, Comput. Sci. Eng., 9, 21 [Google Scholar]
  65. Pettitt, A. N., & Stephens, M. A. 1977, Technometrics, 19, 205 [Google Scholar]
  66. Pollo, A., Takeuchi, T. T., Suzuki, T. L., & Oyabu, S. 2012, PKAS, 27, 343 [Google Scholar]
  67. Ramalingam, S. 2008, J. Mod. Appl. Stat. Meth., 7, 6 [Google Scholar]
  68. Rana, S., & Bagla, J. S. 2019, MNRAS, 485, 5891 [NASA ADS] [CrossRef] [Google Scholar]
  69. Rawlings, J. I., Page, M. J., Symeonidis, M., et al. 2015, MNRAS, 452, 4111 [Google Scholar]
  70. Rengelink, R. 1999, in The Most Distant Radio Galaxies, eds. H. J. A. Röttgering, P. N. Best, & M. D. Lehnert, 399 [Google Scholar]
  71. Ricci, L., Boccardi, B., Nokhrina, E., et al. 2022, A&A, 664, A166 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  72. Roche, N., & Eales, S. A. 1999, MNRAS, 307, 703 [NASA ADS] [CrossRef] [Google Scholar]
  73. Saslaw, W. 2000, The Distribution of the Galaxies: Gravitational Clustering in Cosmology (Cambridge: Cambridge University Press) [Google Scholar]
  74. Saslaw, W. C., & Fang, F. 1996, ApJ, 460, 16 [Google Scholar]
  75. Saxena, A., Röttgering, H. J. A., Duncan, K. J., et al. 2019, MNRAS, 489, 5053 [Google Scholar]
  76. Seldner, M., & Peebles, P. J. E. 1981, MNRAS, 194, 251 [Google Scholar]
  77. Shappee, B. J., & Stanek, K. Z. 2011, ApJ, 733, 124 [NASA ADS] [CrossRef] [Google Scholar]
  78. Sheth, R. K., & Saslaw, W. C. 1994, ApJ, 437, 35 [Google Scholar]
  79. Shimwell, T. W., Röttgering, H. J. A., Best, P. N., et al. 2017, A&A, 598, A104 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  80. Shimwell, T. W., Tasse, C., Hardcastle, M. J., et al. 2019, A&A, 622, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  81. Shimwell, T., Hardcastle, M. J., Tasse, C., et al. 2022, A&A, 659, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  82. Siewert, T. M. 2021, PhD Thesis, Universität Bielefeld, Bielefeld [Google Scholar]
  83. Siewert, T. M., Hale, C., Bhardwaj, N., et al. 2020, A&A, 643, A100 [EDP Sciences] [Google Scholar]
  84. Siewert, T. M., Schmidt-Rubart, M., & Schwarz, D. J. 2021, A&A, 653, A9 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  85. Singh, V., Beelen, A., Wadadekar, Y., et al. 2014, A&A, 569, A52 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  86. Smirnov, N. 1948, Ann. Math. Stat., 19, 279 [CrossRef] [Google Scholar]
  87. Smolčić, V., Delvecchio, I., Zamorani, G., et al. 2017, A&A, 602, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  88. Sotnikova, Y., Mikhailov, A., Mufakharov, T., et al. 2021, MNRAS, 508, 2798 [CrossRef] [Google Scholar]
  89. Totsuji, H., & Kihara, T. 1969, PASJ, 21, 221 [NASA ADS] [Google Scholar]
  90. van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Comput. Sci. Eng., 13, 22 [Google Scholar]
  91. van Haarlem, M. P., Wise, M. W., Gunst, A. W., et al. 2013, A&A, 556, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  92. Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nat. Meth., 17, 261 [Google Scholar]
  93. Wang, Y., Brunner, R. J., & Dolence, J. C. 2013, MNRAS, 432, 1961 [CrossRef] [Google Scholar]
  94. Wen, D., Kemball, A. J., & Saslaw, W. C. 2020, ApJ, 890, 160 [Google Scholar]
  95. Williams, W. L., Hardcastle, M. J., Best, P. N., et al. 2019, A&A, 622, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  96. Wilman, R. J., Röttgering, H. J. A., Overzier, R. A., & Jarvis, M. J. 2003, MNRAS, 339, 695 [Google Scholar]
  97. Wilman, R. J., Miller, L., Jarvis, M. J., et al. 2008, MNRAS, 388, 1335 [NASA ADS] [Google Scholar]
  98. Wong, S. 1992, Computational Methods in Physics and Engineering (Allied Publishers) [Google Scholar]
  99. Yang, A., & Saslaw, W. C. 2011, ApJ, 729, 123 [NASA ADS] [CrossRef] [Google Scholar]
  100. Zheng, Z., Berlind, A. A., Weinberg, D. H., et al. 2005, ApJ, 633, 791 [NASA ADS] [CrossRef] [Google Scholar]
  101. Zonca, A., Singer, L., Lenz, D., et al. 2019, J. Open Source Softw., 4, 1298 [Google Scholar]
  102. Zwillinger, D., & Kokoska, S. 2000, CRC Standard Probability and Statistics Tables and Formulae (Boca Raton: Chapman and Hall/CRC) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.