Open Access
Issue
A&A
Volume 691, November 2024
Article Number A83
Number of page(s) 11
Section Atomic, molecular, and nuclear data
DOI https://doi.org/10.1051/0004-6361/202451674
Published online 31 October 2024
  1. Altwegg, K., Balsiger, H., & Fuselier, S. A. 2019, in Annual Review of Astronomy and Astrophysics, 57, eds. S. Faber, E. VanDishoeck, & R. Kennicutt, 113 [CrossRef] [Google Scholar]
  2. Anicich, V. 2003, JPL Open Repository, http://hdl.handle.net/2014/7981 [Google Scholar]
  3. Åsbrink, L., Niessen, W., & Bieri, G. 1980, J. Elect. Spectr. Rel. Phen., 21, 93 [CrossRef] [Google Scholar]
  4. Ascenzi, D., Cont, N., Guella, G., Franceschi, P., & Tosi, P. 2007, J. Phys. Chem. A, 111, 12513 [CrossRef] [Google Scholar]
  5. Ascenzi, D., Tosi, P., Franceschi, P., et al. 2012, Chem. Phys., 398, 269 [NASA ADS] [CrossRef] [Google Scholar]
  6. Ascenzi, D., Cernuto, A., Balucani, N., et al. 2019, A&A, 625, A72 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  7. Bass, L., Su, T., Chesnavich, W., & Bowers, M. 1975, Chem. Phys. Lett., 34, 119 [NASA ADS] [CrossRef] [Google Scholar]
  8. Ben Khalifa, M., Dagdigian, P. J., & Loreau, J. 2022, J. Phys. Chem. A, 126, 9658 [NASA ADS] [CrossRef] [Google Scholar]
  9. Bergner, J. B., Guzmán, V. G., Öberg, K. I., Loomis, R. A., & Pegues, J. 2018, ApJ, 857, 69 [Google Scholar]
  10. Bianchi, E., Ceccarelli, C., Codella, C., et al. 2022, A&A, 662, A103 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  11. Biver, N., & Bockelee-Morvan, D. 2019, ACS Earth Space Chem., 3, 1550 [NASA ADS] [CrossRef] [Google Scholar]
  12. Booth, A. S., Walsh, C., Terwisscha van Scheltinga, J., et al. 2021, Nat. Astron., 5, 684 [NASA ADS] [CrossRef] [Google Scholar]
  13. Booth, A. S., Law, C. J., Temmink, M., Leemker, M., & Macías, E. 2023, A&A, 678, A146 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  14. Boran, Y., Kolomenskii, A. A., Sayrac, M., et al. 2017, J. Phys. B At. Mol. Opt. Phys., 50, 135003 [NASA ADS] [CrossRef] [Google Scholar]
  15. Candori, R., Cavalli, S., Pirani, F., et al. 2001, J. Chem. Phys., 115, 8888 [CrossRef] [Google Scholar]
  16. Cappelletti, D., Falcinelli, S., & Pirani, F. 2024, PCCP, 26, 7971 [NASA ADS] [CrossRef] [Google Scholar]
  17. Cazaux, S., Tielens, A., Ceccarelli, C., et al. 2003, ApJ, 593, L51 [CrossRef] [Google Scholar]
  18. Ceccarelli, C., Codella, C., Balucani, N., et al. 2023, in Protostars and Planets VII, 534, eds. S. Inutsuka, Y. Aikawa, T. Muto, K. Tomida, & M. Tamura (San Francisco: Astronomical Society of the Pacific, ASP Conference Series), 379 [NASA ADS] [Google Scholar]
  19. Cernuto, A., Tosi, P., Martini, L. M., Pirani, F., & Ascenzi, D. 2017, PCCP, 19, 19554 [NASA ADS] [CrossRef] [Google Scholar]
  20. Cernuto, A., Pirani, F., Martini, L. M., Tosi, P., & Ascenzi, D. 2018, ChemPhysChem, 19, 51 [CrossRef] [Google Scholar]
  21. Clary, D. 1990, Annu. Rev. Phys. Chem., 41, 61 [NASA ADS] [CrossRef] [Google Scholar]
  22. Codella, C., Benedettini, M., Beltran, M. T., et al. 2009, A&A, 507, L25 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  23. Dechamps, N., Flammang, R., Boulvin, M., et al. 2007, Eur. J. Mass Spectrom., 13, 385 [CrossRef] [Google Scholar]
  24. Dohnal, P., Jusko, P., Jiménez-Redondo, M., & Caselli, P. 2023, J. Chem. Phys., 158, 244303 [NASA ADS] [CrossRef] [Google Scholar]
  25. Falcinelli, S., Cappelletti, D., Vecchiocattivi, F., & Pirani, F. 2023, PCCP, 25, 16176 [NASA ADS] [CrossRef] [Google Scholar]
  26. Franceschi, P., Penasa, L., Ascenzi, D., et al. 2007, Int. J. Mass Spectrom., 265, 224 [NASA ADS] [CrossRef] [Google Scholar]
  27. Franklin, J., Wada, Y., & Natalis, P. 1966, J . Phys. Chem., 70, 2353 [CrossRef] [Google Scholar]
  28. Garrod, R. T., Weaver, S. L. W., & Herbst, E. 2008, ApJ, 682, 283 [NASA ADS] [CrossRef] [Google Scholar]
  29. Giani, L., Ceccarelli, C., Mancini, L., et al. 2023, MNRAS, 526, 4535 [NASA ADS] [CrossRef] [Google Scholar]
  30. Gislason, E. A., & Sachs, J. G. 1975, J. Chem. Phys., 62, 2678 [NASA ADS] [CrossRef] [Google Scholar]
  31. Gisler, A. W., & Nesbitt, D. J. 2012, Faraday Discuss., 157, 297 [NASA ADS] [CrossRef] [Google Scholar]
  32. Gochel-Dupuis, M., Delwiche, J., Hubin-Franskin, M., & Collin, J. 1992, Chem. Phys. Lett., 193, 41 [NASA ADS] [CrossRef] [Google Scholar]
  33. Gray, G. 1968, J. Am. Chem. Soc., 90, 6002 [CrossRef] [Google Scholar]
  34. Haenni, N., Altwegg, K., Balsiger, H., et al. 2021, A&A, 647, A22 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  35. Hahn, R., Schlander, D., Zhelyazkova, V., & Merkt, F. 2024, Phys. Rev. X, 14, 011034 [NASA ADS] [Google Scholar]
  36. Harland, P., & McIntosh, B. 1985, Int. J. Mass Spectrom., 67, 29 [NASA ADS] [CrossRef] [Google Scholar]
  37. Hellwege, K.-H., & Hellwege, A., eds. 1974, Landolt-Bornstein: Group II: Volume 6: Molecular Constants from Microwave, Molecular Beam, and Electron Spin Resonance Spectroscopy (Berlin: Springer-Verlag) [CrossRef] [Google Scholar]
  38. Holland, D., & Karlsson, L. 2006, J. Electron Spectrosc. Related Phenomena, 150, 47 [CrossRef] [Google Scholar]
  39. Holland, D., Parr, A., & Dehmer, J. 1984, J. Electron Spectrosc. Related Phenomena, 34, 87 [CrossRef] [Google Scholar]
  40. Huang, C.-K., Lin, I.-F., & Chiang, S.-Y. 2007, Chem. Phys. Lett., 440, 51 [NASA ADS] [CrossRef] [Google Scholar]
  41. Ilee, J. D., Walsh, C., Booth, A. S., et al. 2021, ApJS, 257, 9 [NASA ADS] [CrossRef] [Google Scholar]
  42. Kastner, J. H., Qi, C., Dickson-Vandervelde, D. A., et al. 2018, ApJ, 863, 106 [Google Scholar]
  43. Kilaj, A., Kaser, S., Wang, J., et al. 2023, PCCP, 25, 13933 [NASA ADS] [CrossRef] [Google Scholar]
  44. Kosmas, A. 1984, J. Physique Lett., 45, 1083 [CrossRef] [EDP Sciences] [Google Scholar]
  45. Krohn, O. A., Catani, K. J., Greenberg, J., et al. 2021, J. Chem. Phys., 154, 074305 [NASA ADS] [CrossRef] [Google Scholar]
  46. Krohn, O. A., Catani, K. J., Sundar, S. P., et al. 2023, J. Phys. Chem. A, 127, 5120 [NASA ADS] [CrossRef] [Google Scholar]
  47. Krohn, O. A., & Lewandowski, H. J. 2024, J. Phys. Chem. A, 128, 1737 [NASA ADS] [CrossRef] [Google Scholar]
  48. Kukka, E., Sankari, R., Huttula, M., et al. 2009, Int. J. Mass Spectrom., 279, 69 [NASA ADS] [CrossRef] [Google Scholar]
  49. Landau, L. 1932, Phys. Z. Sowjetunion, 2, 118 [Google Scholar]
  50. Lee, J.-E., Lee, S., Baek, G., et al. 2019, Nat. Astron., 3, 314 [Google Scholar]
  51. Le Roy, L., Altwegg, K., Balsiger, H., et al. 2015, A&A, 583, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  52. Li, A., Li, Y., Guo, H., et al. 2014, J. Chem. Phys., 140, 011102 [CrossRef] [Google Scholar]
  53. Liddy, J., Freeman, C., & McEwan, M. 1977, Int. J. Mass Spectrom. Ion Proc., 23, 153 [NASA ADS] [CrossRef] [Google Scholar]
  54. Liddy, J., Freeman, C., & McEwan, M. 1992, Int. J. Mass Spectrom. Ion Proc., 117, 457 [NASA ADS] [CrossRef] [Google Scholar]
  55. Linstrom, P. J., & Mallard, W. G. 2024, NIST Chemistry WebBook, https://doi.org/10.18434/T4D303 [Google Scholar]
  56. Liszt, H., Gerin, M., Beasley, A., & Pety, J. 2018, ApJ, 856, 151 [Google Scholar]
  57. Loomis, R. A., Cleeves, L. I., Öberg, K. I., et al. 2018, ApJ, 859, 131 [Google Scholar]
  58. Loomis, R. A., Öberg, I. K., Andrews, S. M., et al. 2020, ApJ, 893, 101 [NASA ADS] [CrossRef] [Google Scholar]
  59. Mackay, G., Betowski, L. D., Payzant, J. D., Schiff, H., & Bohme, D. K. 1976, J. Phys. Chem., 80, 2919 [CrossRef] [Google Scholar]
  60. Mancini, L., de Aragão, E. V. F., Pirani, F., et al. 2024, in Computational Science and Its Applications – ICCSA 2024 Workshops (Springer Nature Switzerland), 39 [CrossRef] [Google Scholar]
  61. Marchione, D., Mancini, L., Liang, P., et al. 2022, J. Phys. Chem. A, 126, 3569 [NASA ADS] [CrossRef] [Google Scholar]
  62. Martins, F. B. V., Zhelyazkova, V., Osterwalder, A., & Merkt, F. 2023, CHIMIA, 77, 221 [CrossRef] [Google Scholar]
  63. Matthews, H., & Sears, T. J. 1983, ApJ, 267, L53 [CrossRef] [Google Scholar]
  64. McDonnell, M., LaForge, A. C., Reino-Gonzalez, J., et al. 2020, J. Phys. Chem. Lett., 11, 6724 [CrossRef] [Google Scholar]
  65. McElroy, D., Walsh, C., Markwick, A. J., et al. 2013, A&A, 550, A36 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  66. McEwan, M. J., Denison, A. B., Huntress, W. T. Jr., et al. 1989, J . Phys. Chem., 93, 4064 [CrossRef] [Google Scholar]
  67. Mezei, Z. J., Chakrabarti, K., Epee, M. D. E., et al. 2019, ACS Earth Space Chem., 3, 2376 [NASA ADS] [CrossRef] [Google Scholar]
  68. Millar, T. J., Walsh, C., Van de Sande, M., & Markwick, A. J. 2024, A&A, 682, A109 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  69. Mumma, M. J., & Charnley, S. B. 2011, in Annual Review of Astronomy and Astrophysics, 49, eds. S. Faber, & E. VanDishoeck, 471 [NASA ADS] [CrossRef] [Google Scholar]
  70. Nikitin, E. 1999, Annu. Rev. Phys. Chem., 50, 1 [NASA ADS] [CrossRef] [Google Scholar]
  71. Nikitin, E. E., & Umanskii, S. Y. 2012, Theory of Slow Atomic Collisions, 30 (Springer Science & Business Media) [Google Scholar]
  72. Öberg, K. I., Guzman, V. V., Furuya, K., et al. 2015, Nature, 520, 198 [CrossRef] [Google Scholar]
  73. Okada, K., Sakimoto, K., Takada, Y., & Schuessler, H. A. 2020, J. Chem. Phys., 153 [CrossRef] [Google Scholar]
  74. Oldham, N. 1999, Rapid Commun. Mass Spectrom., 13, 1694 [Google Scholar]
  75. Olson, R., Smith, F., & Bauer, E. 1971, Appl. Opt., 10, 1848 [NASA ADS] [CrossRef] [Google Scholar]
  76. Parkes, M. A., Douglas, K. M., & Price, S. D. 2019, Int. J. Mass Spectrom., 438, 97 [NASA ADS] [CrossRef] [Google Scholar]
  77. Pirani, F., Giulivi, A., Cappelletti, D., & Aquilanti, V. 2000, Mol. Phys., 98, 1749 [CrossRef] [Google Scholar]
  78. Pirani, F., Maciel, G., Cappelletti, D., & Aquilanti, V. 2006, Int. Rev. Phys. Chem., 25, 169 [Google Scholar]
  79. Ploenes, L., Stran? ák, P., Mishra, A., et al. 2024, Nat. Chem. in press, https://doi.org/10.1038/s41557-024-01590-1 [Google Scholar]
  80. Polasek, M., Zins, E.-L., Alcaraz, C., et al. 2016, J. Phys. Chem. A, 120, 5041 [NASA ADS] [CrossRef] [Google Scholar]
  81. Prasad, S., & Huntress, W. 1980, ApJS, 43, 1 [NASA ADS] [CrossRef] [Google Scholar]
  82. Purcell, C. R., Balasubramanyam, R., Burton, M. G., et al. 2006, MNRAS, 367, 553 [Google Scholar]
  83. Ribeiro, F. d. A., Almeida, G. C., Garcia-Basabe, Y., et al. 2015, PCCP, 17, 27473 [NASA ADS] [CrossRef] [Google Scholar]
  84. Richardson, V., de Aragão, E. V. F., He, X., et al. 2022, PCCP, 24, 22437 [NASA ADS] [CrossRef] [Google Scholar]
  85. Ruscic, B., & Bross, D. 2020, Active Thermochemical Tables (ATcT) values based on ver. 1.122p of the Thermochemical Network, https://atct.anl.gov/Thermochemical%20Data/version%201.122h [Google Scholar]
  86. Russell, D. J. I. 2020, NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, http://cccbdb.nist.gov/ [Google Scholar]
  87. Schwell, M., Jochims, H.-W., Baumgaertel, H., & Leach, S. 2008, Chem. Phys., 344, 164 [NASA ADS] [CrossRef] [Google Scholar]
  88. Solomon, P., Jefferts, K., Penzias, A., & Wilson, R. 1971, ApJ, 168, L107 [NASA ADS] [CrossRef] [Google Scholar]
  89. Stückelberg, E. C. G. 1932, Helv. Phys. Acta (Basel), 5, 369 [Google Scholar]
  90. Su, T., & Chesnavich, W. J. 1982, J. Chem. Phys., 76, 5183 [NASA ADS] [CrossRef] [Google Scholar]
  91. Su, T., Su, E. C. F., & Bowers, M. T. 1978, J. Chem. Phys., 69, 2243 [NASA ADS] [CrossRef] [Google Scholar]
  92. Sutherland, J. D. 2017, Nat. Rev. Chem., 1, 0012 [CrossRef] [Google Scholar]
  93. Taquet, V., Lopez-Sepulcre, A., Ceccarelli, C., et al. 2015, ApJ, 804, 81 [NASA ADS] [CrossRef] [Google Scholar]
  94. Teloy, E., & Gerlich, D. 1974, Chem. Phys., 4, 417 [NASA ADS] [CrossRef] [Google Scholar]
  95. Thiel, V., Belloche, A., Menten, K., Garrod, R., & Müller, H. S. P. 2017, ApJ, 605, L6 [Google Scholar]
  96. Thiel, V., Belloche, A., Menten, K., et al. 2019, A&A, 623, A68 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  97. Troe, J. 1996, J. Chem. Phys., 105, 6249 [NASA ADS] [CrossRef] [Google Scholar]
  98. Tsikritea, A., Diprose, J. A., Softley, T. P., & Heazlewood, B. R. 2022, J. Chem. Phys., 157, 060901 [NASA ADS] [CrossRef] [Google Scholar]
  99. Turner, D. W. 1970, Philos. Trans. Roy. Soc. London. Ser. A, Math. Phys. Sci., 268, 7 [NASA ADS] [Google Scholar]
  100. Vogt, J., & Beauchamp, J. L. 1975, J. Am. Chem. Soc., 97, 6682 [CrossRef] [Google Scholar]
  101. Voute, A., Dörfler, A., Wiesenfeld, L., et al. 2023, Phys. Rev. Res., 5, L032021 [NASA ADS] [CrossRef] [Google Scholar]
  102. Wakelam, V., Loison, J.-C., Herbst, E., et al. 2015, ApJS, 217, 20 [Google Scholar]
  103. Watanabe, N., & Kouchi, A. 2002, ApJ, 571, L173 [Google Scholar]
  104. Wincell, H., Wlodek, S., & Bohme, D. 1988, Int. J. Mass Spectrom., 84, 69 [NASA ADS] [CrossRef] [Google Scholar]
  105. Xu, L., Toscano, J., & Willitsch, S. 2024, Phys. Rev. Lett., 132, 083001 [CrossRef] [Google Scholar]
  106. Yang, Y.-L., Sakai, N., Zhang, Y., et al. 2021, ApJ, 910, 20 [Google Scholar]
  107. Zener, C. 1932, Proc. Roy. Soc. Lond. Ser. A, 137, 696 [NASA ADS] [CrossRef] [Google Scholar]
  108. Zeng, S., Jiménez-Serra, I., Rivilla, V., et al. 2018, MNRAS, 478, 2962 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.