Free Access
Issue
A&A
Volume 579, July 2015
Article Number A64
Number of page(s) 12
Section The Sun
DOI https://doi.org/10.1051/0004-6361/201525978
Published online 29 June 2015
  1. Abramenko, V. I. 2005, Sol. Phys., 228, 29 [NASA ADS] [CrossRef] [Google Scholar]
  2. Abramenko, V. I., Yurchyshyn, V. B., Wang, H., Spirock, T. J., & Goode, P. R. 2003, ApJ, 597, 1135 [NASA ADS] [CrossRef] [Google Scholar]
  3. Ahmed, O. W., Qahwaji, R., Colak, T., et al. 2013, Sol. Phys., 283, 157 [NASA ADS] [CrossRef] [Google Scholar]
  4. Barnes, G., & Leka, K. D. 2006, ApJ, 646, 1303 [Google Scholar]
  5. Bishop, C. M. 2006, Pattern Recognition and Machine Learning (New York: Springer) [Google Scholar]
  6. Bloomfield, D. S., Higgins, P. A., McAteer, R. T. J., & Gallagher, P. T. 2012, ApJ, 747, L41 [Google Scholar]
  7. Burges, C. J. C. 1998, Data Mining and Knowledge Discovery, 2, 121 [Google Scholar]
  8. Cao, L.-J., & Tay, F. E. H. 2003, IEEE Transactions on Neural Networks, 14, 1506 [CrossRef] [Google Scholar]
  9. Chapelle, O., Haffner, P., & Vapnik, V. N. 1999, IEEE Transactions on Neural Networks, 10, 1055 [CrossRef] [Google Scholar]
  10. Conlon, P. A., Gallagher, P. T., McAteer, R. T. J., et al. 2008, Sol. Phys., 248, 297 [Google Scholar]
  11. Conlon, P. A., Gallagher, P. T., McAteer, R. T. J., & Fennell, L. 2010, ApJ, 722, 577 [Google Scholar]
  12. Drucker, H., Wu, S., & Vapnik, V. N. 1999, IEEE Transactions on Neural Networks, 10, 1048 [CrossRef] [Google Scholar]
  13. Emslie, A., Dennis, B., Shih, A. Y., et al. 2012, ApJ, 759, 71 [NASA ADS] [CrossRef] [Google Scholar]
  14. Falconer, D., Barghouty, A. F., Khazanov, I., & Moore, R. 2011, Space Weather, 9, 04003 [NASA ADS] [CrossRef] [Google Scholar]
  15. Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 1627 [CrossRef] [Google Scholar]
  16. Feynman, J., & Martin, S. F. 1995, J. Geophys. Res., 100, 3355 [NASA ADS] [CrossRef] [Google Scholar]
  17. Furey, T. S., Cristianini, N., Duffy, N., et al. 2000, Bioinformatics, 16, 906 [CrossRef] [Google Scholar]
  18. Gallagher, P. T., Moon, Y.-J., & Wang, H. 2002, Sol. Phys., 209, 171 [Google Scholar]
  19. Georgoulis, M. K., & Rust, D. M. 2007, ApJ, 661, L109 [NASA ADS] [CrossRef] [Google Scholar]
  20. Gonzalez, R. C., & Woods, R. E. 2007, Digital Image Processing (New Jersey: Prentice Hall) [Google Scholar]
  21. Gonzalez, R. C., Woods, R. E., & Eddins, S. L. 2009, Digital Image Processing Using Matlab (Gatesmark Publishing) [Google Scholar]
  22. Green, L. M., Démoulin, P., Mandrini, C. H., & Van Driel-Gesztelyi, L. 2003, Sol. Phys., 215, 307 [NASA ADS] [CrossRef] [Google Scholar]
  23. Guo, J., Zhang, H., Chumak, O. V., & Liu, Y. 2006, Sol. Phys., 237, 25 [NASA ADS] [CrossRef] [Google Scholar]
  24. Hagyard, M. J., Stark, B. A., & Venkatakrishnan, P. 1999, Sol. Phys., 184, 133 [NASA ADS] [CrossRef] [Google Scholar]
  25. Hewett, R. J., Gallagher, P. T., McAteer, R., Ireland, J., & Young, C. 2008, Sol. Phys., 248, 297 [Google Scholar]
  26. Hua, S., & Sun, Z. 2001, Bioinformatics, 17, 721 [CrossRef] [Google Scholar]
  27. Huang, X., Yu, D., Hu, Q., Wang, H., & Cui, Y. 2010, Sol. Phys., 263, 175 [NASA ADS] [CrossRef] [Google Scholar]
  28. Ireland, J., Young, C. A., McAteer, R. T. J., et al. 2008, Sol. Phys., 252, 121 [NASA ADS] [CrossRef] [Google Scholar]
  29. Jing, J., Song, H., Abramenko, V., Tin, C., & Wang, H. 2006, ApJ, 644, 1273 [Google Scholar]
  30. Jing, J., Tin, C., Yuan, Y., et al. 2010, ApJ, 713, 440 [NASA ADS] [CrossRef] [Google Scholar]
  31. Leka, K. D., & Barnes, G. 2003a, ApJ, 595, 1277 [CrossRef] [Google Scholar]
  32. Leka, K. D., & Barnes, G. 2003b, ApJ, 595, 1296 [CrossRef] [Google Scholar]
  33. Leka, K. D., & Barnes, G. 2007, ApJ, 656, 1173 [NASA ADS] [CrossRef] [Google Scholar]
  34. Mason, J. P., & Hoeksema, J. T. 2010, ApJ, 723, 634 [NASA ADS] [CrossRef] [Google Scholar]
  35. McAteer, R. T. J. 2013, in SOC and Fractal Geometry in Self Organized Criticality Systems, 1, 73 [Google Scholar]
  36. McAteer, R. T. J. 2015, Sol. Phys., in press [Google Scholar]
  37. McAteer, R., & Bloomfield, D. 2013, ApJ, 776, 66 [NASA ADS] [CrossRef] [Google Scholar]
  38. McAteer, R. T. J., Gallagher, P. T., & Ireland, J. 2005a, ApJ, 631, 628 [Google Scholar]
  39. McAteer, R. T. J., Gallagher, P. T., Ireland, J., & Young, C. A. 2005b, Sol. Phys., 228, 55 [NASA ADS] [CrossRef] [Google Scholar]
  40. McAteer, R., Young, C., Ireland, J., & Gallagher, P. 2007, ApJ, 662, 691 [NASA ADS] [CrossRef] [Google Scholar]
  41. McAteer, R. T. J., Gallagher, P. T., & Conlon, P. 2010, Adv. Space Sci. Res., 45, 1067 [Google Scholar]
  42. McAteer, R. T. J., Aschwanden, M., Dimitropoulou, M., et al. 2015, Space Sci. Rev., in press [Google Scholar]
  43. Melgani, F., & Bruzzone, L. 2004, IEEE Transactions on Geoscience and Remote Sensing, 42, 1778 [NASA ADS] [CrossRef] [Google Scholar]
  44. Meunier, N. 2004, A&A, 420, 333 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  45. Parker, E. N. 1963, ApJ, 138, 552 [NASA ADS] [CrossRef] [Google Scholar]
  46. Patty, S. R., & Hagyard, M. J. 1986, Sol. Phys., 103, 111 [NASA ADS] [CrossRef] [Google Scholar]
  47. Pudil, P., Novovičová, J., & Kittler, J. 1994, Pattern Recognition Letters, 15, 1119 [Google Scholar]
  48. Rodenacker, K., & Bengtsson, E. 2003, Analytical Cellular Pathology, 25, 1 [CrossRef] [Google Scholar]
  49. Scherrer, P. H., Bogart, R. S., Bush, R. I., et al. 1995, Sol. Phys., 162, 129 [Google Scholar]
  50. Schrijver, C. J. 2007, ApJ, 655, L117 [Google Scholar]
  51. Song, H., Tan, C., Jing, J., et al. 2009, Sol. Phys., 254, 101 [NASA ADS] [CrossRef] [Google Scholar]
  52. Spillman Jr, W. B., Robertson, J. L., Huckle, W. R., Govindan, B. S., & Meissner, K. E. 2004, Phys. Rev. E, 70, 061911 [NASA ADS] [CrossRef] [Google Scholar]
  53. Tang, F., & Wang, H. 1993, Sol. Phys., 143, 107 [NASA ADS] [CrossRef] [Google Scholar]
  54. Tipping, M. E. 2001, J. Machine Learning Res., 1, 211 [Google Scholar]
  55. Tipping, M. E. 2004, Bayesian inference: An introduction to principles and practice in machine learning (Berlin, Heidelberg: Springer), 41 [Google Scholar]
  56. Tipping, M. E., & Faul, A. C. 2003, in The Ninth International Workshop on Artificial Intelligence and Statistics, 1 [Google Scholar]
  57. Tong, S., & Koller, D. 2002, J. Machine Learning Res., 2, 45 [Google Scholar]
  58. Wang, H. 2006, ApJ, 649, 490 [NASA ADS] [CrossRef] [Google Scholar]
  59. Welsch, B. T., Li, Y., Schuck, P. W., & Fisher, G. H. 2009, ApJ, 705, 821 [NASA ADS] [CrossRef] [Google Scholar]
  60. Yu, D., Huang, X., Hu, Q., et al. 2010a, ApJ, 709, 321 [Google Scholar]
  61. Yu, D., Huang, X., Wang, H., et al. 2010b, ApJ, 710, 869 [NASA ADS] [CrossRef] [Google Scholar]
  62. Yuan, Y., Shih, F. Y., Jing, J., & Wang, H.-M. 2010, RA&A, 10, 785 [Google Scholar]
  63. Zhang, H., Ai, G., Yan, X., Li, W., & Liu, Y. 1994, ApJ, 423, 828 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.