Free Access
Issue
A&A
Volume 559, November 2013
Article Number A74
Number of page(s) 20
Section Astronomical instrumentation
DOI https://doi.org/10.1051/0004-6361/201322344
Published online 19 November 2013
  1. Allard, F., Hauschildt, P. H., Alexander, D. R., Tamanai, A., & Schweitzer, A. 2001, ApJ, 556, 357 [NASA ADS] [CrossRef] [Google Scholar]
  2. Allard, F., Homeier, D., & Freytag, B. 2012, Roy. Soc. London Philos. Trans. Ser. A, 370, 2765 [NASA ADS] [CrossRef] [Google Scholar]
  3. Allen de Prieto, C., Koesterke, L., Ludwig, H.-G., Freytag, B., & Caffau, E. 2013, A&A, 550, A103 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  4. Andretta, V., Busà, I., Gomez, M. T., & Terranegra, L. 2005, A&A, 430, 669 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  5. Bailer-Jones, C. A. L. 2009, in IAU Symp. 254, eds. J. Andersen, B. Nordström, & J. Bland-Hawthorn, 475 [Google Scholar]
  6. Bailer-Jones, C. A. L. 2010a, GAIA-C8-TN-MPIA-CBJ-044, Tech. Rep. (Heidelberg: Max Planck Institute for Astronomy) [Google Scholar]
  7. Bailer-Jones, C. A. L. 2010b, MNRAS, 403, 96 [NASA ADS] [CrossRef] [Google Scholar]
  8. Bailer-Jones, C. A. L. 2011, MNRAS, 411, 435 [NASA ADS] [CrossRef] [Google Scholar]
  9. Bailer-Jones, C. A. L., Smith, K. W., Tiede, C., Sordo, R., & Vallenari, A. 2008, MNRAS, 391, 1838 [NASA ADS] [CrossRef] [Google Scholar]
  10. Bellas-Velidis, I., Kontizas, M., Dapergolas, A., et al. 2012, Bulgarian AJ, 18, 020000 [Google Scholar]
  11. Bertelli, G., Girardi, L., Marigo, P., & Nasi, E. 2008, A&A, 484, 815 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  12. Bijaoui, A., Recio-Blanco, A., de Laverny, P., & Ordenovic, C. 2012, Stat. Methodol., 9, 55 [CrossRef] [MathSciNet] [Google Scholar]
  13. Bouret, J., Lanz, T., Frémat, Y., et al. 2008, in Rev. Mex. Astron. Astrofis. Conf. Ser., 33, 50 [Google Scholar]
  14. Brott, I., & Hauschildt, P. H. 2005, in The Three-Dimensional Universe with Gaia, eds. C. Turon, K. S. O’Flaherty, & M. A. C. Perryman, ESA SP, 576, 565 [Google Scholar]
  15. Burges, C. J. C. 1998, Data Min. Knowl. Discov., 2, 121 [NASA ADS] [CrossRef] [Google Scholar]
  16. Busà, I., Aznar Cuadrado, R., Terranegra, L., Andretta, V., & Gomez, M. T. 2007, A&A, 466, 1089 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  17. Caballero, J. A., Burgasser, A. J., & Klement, R. 2008, A&A, 488, 181 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  18. Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245 [NASA ADS] [CrossRef] [Google Scholar]
  19. Casertano, S., Lattanzi, M. G., Sozzetti, A., et al. 2008, A&A, 482, 699 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  20. Castanheira, B. G., Kepler, S. O., Handler, G., & Koester, D. 2006, A&A, 450, 331 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  21. Cenarro, A. J., Cardiel, N., Gorgas, J., et al. 2001, MNRAS, 326, 959 [NASA ADS] [CrossRef] [Google Scholar]
  22. Chang, C.-C., & Lin, C.-J. 2011, ACM Transactions on Intelligent Systems and Technology, 2, 27:1, software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  23. Chiavassa, A., Bigot, L., Thévenin, F., et al. 2011, J. Phys. Conf. Ser., 328, 012012 [NASA ADS] [CrossRef] [Google Scholar]
  24. Chmielewski, Y. 2000, A&A, 353, 666 [NASA ADS] [Google Scholar]
  25. Cortes, C., & Vapnik, V. 1995, Machine Learning, 20, 273 [Google Scholar]
  26. Cover, T. M., & Hart, P. E. 1967, IEEE Trans. Inf. Theory, 13, 21 [NASA ADS] [CrossRef] [Google Scholar]
  27. Cropper, M., & Katz, D. 2011, in EAS PS, 45, 181 [Google Scholar]
  28. De Angeli, F., Evans, D. W., & Brown, S. W. 2012, GAIA-C5-TN-IOA-FDA-029, Tech. Rep., Data Processing and Analysis Consortium [Google Scholar]
  29. de Bruijne, J. H. J. 2012, Ap&SS, 341, 31 [NASA ADS] [CrossRef] [Google Scholar]
  30. de Laverny, P., Recio-Blanco, A., Worley, C. C., & Plez, B. 2012, A&A, 544, A126 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  31. DPAC. 2007, GAIA-CD-SP-DPAC-FM-030, Tech. Rep., Data Processing and Analysis Consortium [Google Scholar]
  32. DPAC. 2012, GAIA-C9-PL-UB-XL-033, Tech. Rep., Data Processing and Analysis Consortium [Google Scholar]
  33. Fioc, M., & Rocca-Volmerange, B. 1997, A&A, 326, 950 [NASA ADS] [Google Scholar]
  34. Fioc, M., & Rocca-Volmerange, B. 1999 [arXiv:astro-ph/9912179] [Google Scholar]
  35. Fremat, Y., Houziaux, L., & Andrillat, Y. 1996, MNRAS, 279, 25 [NASA ADS] [CrossRef] [Google Scholar]
  36. Frémat, Y., Neiner, C., Hubert, A.-M., et al. 2006, A&A, 451, 1053 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  37. Fustes, D., Dafonte, C., Arcay, B., et al. 2013a, A&A, accepted [Google Scholar]
  38. Fustes, D., Dafonte, C., Arcay, B., et al. 2013b, Expert Syst. Appl., 40, 1530 [CrossRef] [Google Scholar]
  39. Gazzano, J.-C., de Laverny, P., Deleuil, M., et al. 2010, A&A, 523, A91 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  40. Gazzano, J.-C., Kordopatis, G., Deleuil, M., et al. 2013, A&A, 550, A125 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  41. Geurts, P., Ernst, D., & Wehenkel, L. 2006, Mach. Learn., 63, 3 [CrossRef] [Google Scholar]
  42. Gilmore, G., Randich, S., Asplund, M., et al. 2012, The Messenger, 147, 25 [NASA ADS] [Google Scholar]
  43. Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759 [NASA ADS] [CrossRef] [Google Scholar]
  44. Gustafsson, B., Edvardsson, B., Eriksson, K., et al. 2008, A&A, 486, 951 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  45. Henry, T. J., Soderblom, D. R., Donahue, R. A., & Baliunas, S. L. 1996, AJ, 111, 439 [NASA ADS] [CrossRef] [Google Scholar]
  46. Jordi, C. 2011, in EAS PS, 45, 149 [Google Scholar]
  47. Jordi, C., Høg, E., Brown, A. G. A., et al. 2006, MNRAS, 367, 290 [NASA ADS] [CrossRef] [Google Scholar]
  48. Jordi, C., Gebran, M., Carrasco, J. M., et al. 2010, A&A, 523, A48 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  49. Karampelas, A., Kontizas, M., Rocca-Volmerange, B., et al. 2012, A&A, 538, A38 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  50. Katz, D., Munari, U., Cropper, M., et al. 2004, MNRAS, 354, 1223 [NASA ADS] [CrossRef] [Google Scholar]
  51. Katz, D., Cropper, M., Meynadier, F., et al. 2011, EAS PS, 45, 189 [CrossRef] [EDP Sciences] [Google Scholar]
  52. Kim, D.-W. 2013, GAIA-C8-SP-MPIA-DWK-001, Tech. Rep. (Heidelberg: Max Planck Institute for Astronomy) [Google Scholar]
  53. Kochukhov, O., & Shulyak, D. 2008, Contributions of the Astronomical Observatory Skalnate Pleso, 38, 419 [NASA ADS] [Google Scholar]
  54. Kohonen, T., Schroeder, M. R., & Huang, T. S. 2001, Self-Organizing Maps, 3rd edn. (Springer) [Google Scholar]
  55. Kordopatis, G., Recio-Blanco, A., de Laverny, P., et al. 2011a, A&A, 535, A106 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  56. Kordopatis, G., Recio-Blanco, A., de Laverny, P., et al. 2011b, A&A, 535, A107 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  57. Lebzelter, T., Heiter, U., Abia, C., et al. 2012, A&A, 547, A108 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  58. Li, J., Ray, S., & Lindsay, B. G. 2007, J. Machine Learning Res., 8, 1687 [Google Scholar]
  59. Lindegren, L., Babusiaux, C., Bailer-Jones, C. A. L., et al. 2008, in IAU Symp. 248, eds. W. J. Jin, I. Platais, & M. A. C. Perryman, 217 [Google Scholar]
  60. Lindegren, L., Lammers, U., Hobbs, D., et al. 2012, A&A, 538, A78 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  61. Linsky, J. L., & Haisch, B. M. 1979, ApJ, 229, L27 [NASA ADS] [CrossRef] [Google Scholar]
  62. Liu, C., Bailer-Jones, C. A. L., Sordo, R., et al. 2012, MNRAS, 426, 2463 [NASA ADS] [CrossRef] [Google Scholar]
  63. Lobel, A., Fremat, Y., & Blomme, R. 2010, GAIA-C8-TN-ROB-AJL-001, Tech. Rep. (Royal observatory of Belgium) [Google Scholar]
  64. Lobel, A., Fremat, Y., Royer, P., & Blomme, R. 2013, GAIA-C8-TN-ROB-AJL-002, Tech. Rep. (Royal observatory of Belgium) [Google Scholar]
  65. Luri, X., Babusiaux, C., & Masana, E. 2005, in The Three-Dimensional Universe with Gaia, eds. C. Turon, K. S. O’Flaherty, & M. A. C. Perryman, ESA SP, 576, 357 [Google Scholar]
  66. Magic, Z., Collet, R., Asplund, M., et al. 2013, A&A, 557, A26 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  67. Martayan, C., Frémat, Y., Blomme, R., et al. 2008, in SF2A-2008, eds. C. Charbonnel, F. Combes, & R. Samadi, 499 [Google Scholar]
  68. Mashonkina, L., Korn, A. J., & Przybilla, N. 2007, A&A, 461, 261 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  69. Merle, T., Thévenin, F., Pichon, B., & Bigot, L. 2011, MNRAS, 418, 863 [NASA ADS] [CrossRef] [Google Scholar]
  70. Mignard, F., & Klioner, S. A. 2010, in IAU Symp., 261, eds. S. A. Klioner, P. K. Seidelmann, & M. H. Soffel, 306 [Google Scholar]
  71. Mignard, F., Bailer-Jones, C. A. L., Bastian, U., et al. 2008, in IAU Symp. 248, eds. W. J. Jin, I. Platais, & M. A. C. Perryman, 224 [Google Scholar]
  72. Ng, Y. K., & Bertelli, G. 1998, A&A, 329, 943 [NASA ADS] [Google Scholar]
  73. O’Mullane, W., Lammers, U., Bailer-Jones, C. A. L., et al. 2007, in Astronomical Data Analysis Software and Systems XVI, eds. R. A. Shaw, F. Hill, & D. J. Bell, ASP Conf. Ser., 376, 99 [Google Scholar]
  74. Önehag, A., Heiter, U., Gustafsson, B., et al. 2012, A&A, 542, A33 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  75. Perryman, M. A. C., de Boer, K. S., Gilmore, G., et al. 2001, A&A, 369, 339 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  76. Plez, B. 2011, J. Phys. Conf. Ser., 328, 012005 [NASA ADS] [CrossRef] [Google Scholar]
  77. Pont, F., & Eyer, L. 2004, MNRAS, 351, 487 [NASA ADS] [CrossRef] [Google Scholar]
  78. Prod’homme, T., Holl, B., Lindegren, L., & Brown, A. G. A. 2012, MNRAS, 419, 2995 [NASA ADS] [CrossRef] [Google Scholar]
  79. Prusti, T. 2012, GAIA-CG-PL-ESA-TJP-011, Tech. Rep., Data Processing and Analysis Consortium [Google Scholar]
  80. Raskin, G., van Winckel, H., Hensberge, H., et al. 2011, A&A, 526, A69 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  81. Rasmussen, C., & Williams, C. 2006, Gaussian processes for machine learning, Adaptive computation and machine learning (MIT Press) [Google Scholar]
  82. Recio-Blanco, A., Bijaoui, A., & de Laverny, P. 2006, MNRAS, 370, 141 [NASA ADS] [CrossRef] [Google Scholar]
  83. Robin, A. C., Reylé, C., Derrière, S., & Picaud, S. 2003, A&A, 409, 523 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  84. Robin, A. C., Luri, X., Reylé, C., et al. 2012, A&A, 543, A100 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  85. Sarro, L. M., Berihuete, A., Carrión, C., et al. 2013, A&A, 550, A44 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  86. Shulyak, D., Tsymbal, V., Ryabchikova, T., Stütz, C., & Weiss, W. W. 2004, A&A, 428, 993 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  87. Sivia, D., & Skilling, J. 2006, Data Analysis: A Bayesian Tutorial, Oxford Science Publications (Oxford: OUP) [Google Scholar]
  88. Smith, K. 2011, GAIA-C8-TN-MPIA-KS-019, Tech. Rep. (Heidelberg: Max Planck Institute for Astronomy) [Google Scholar]
  89. Smith, K. W., Bailer-Jones, C. A. L., Klement, R. J., & Xue, X. X. 2010, A&A, 522, A88 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  90. Sordo, R., & Vallenari, A. 2013, GAIA-C8-TN-MPIA-RS-010, Tech. Rep., Data Processing and Analysis Consortium [Google Scholar]
  91. Sordo, R., Vallenari, A., Tantalo, R., et al. 2010, Ap&SS, 328, 331 [NASA ADS] [CrossRef] [Google Scholar]
  92. Sordo, R., Vallenari, A., Tantalo, R., et al. 2011, J. Phys. Conf. Ser., 328, 012006 [NASA ADS] [CrossRef] [Google Scholar]
  93. Tanga, P., & Mignard, F. 2012, Planet. Space Sci., 73, 5 [NASA ADS] [CrossRef] [Google Scholar]
  94. Tsalmantza, P., & Bailer-Jones, C. A. L. 2010a, GAIA-C8-SP-MPIA-PAT-009, Tech. Rep. (Heidelberg: Max Planck Institute for Astronomy) [Google Scholar]
  95. Tsalmantza, P., & Bailer-Jones, C. A. L. 2010b, GAIA-C8-TN-MPIA-PAT-008, Tech. Rep. (Heidelberg: Max Planck Institute for Astronomy) [Google Scholar]
  96. Tsalmantza, P., & Bailer-Jones, C. 2012, in Astrostatistics and Data Mining, eds. L. M. Sarro, L. Eyer, W. O’Mullane, & J. De Ridder (New York: Springer), Springer Series in Astrostatistics, 2, 263 [Google Scholar]
  97. Tsalmantza, P., Kontizas, M., Bailer-Jones, C. A. L., et al. 2007, A&A, 470, 761 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  98. Tsalmantza, P., Kontizas, M., Rocca-Volmerange, B., et al. 2009, A&A, 504, 1071 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  99. Tsalmantza, P., Karampelas, A., Kontizas, M., et al. 2012, A&A, 537, A42 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  100. Turon, C., O’Flaherty, K. S., & Perryman, M. A. C. 2005, in The Three-Dimensional Universe with Gaia, ESA SP, 576 [Google Scholar]
  101. Vapnik, V. N. 1995, The nature of statistical learning theory (New York: Springer-Verlag) [Google Scholar]
  102. Wand, M. P., & Jones, M. C. 1995, Kernel smoothing (Chapman and Hall) [Google Scholar]
  103. Worley, C. C., de Laverny, P., Recio-Blanco, A., et al. 2012, A&A, 542, A48 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  104. Wright, J. T., Marcy, G. W., Butler, R. P., & Vogt, S. S. 2004, ApJS, 152, 261 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.