Open Access

Table A.2

Chlorine photochemical scheme included in the MPCM

Label Reaction Reaction rate Reference
ph1 HCl + → H + Cl [1]
ph2 Cl2 + → Cl + Cl [2]
ph3 ClO + → Cl + O(1D) [2]
ph4 ClO + → Cl + O [2]
ph5 HOCl + → Cl + OH [2]
ph6 ClOO + → Cl + O2 [2]
ph7 OClO + → ClO + O [2]
h1 6 H2O + dust → Cl + 6 H2O 14×vth(H_2O)×γ1×0.0049×Sdust$\frac{1}{4}\times v_{\text{th}}(\text{H_2O})\times \gamma_1 \times 0.0049 \times S_{\text{dust}}$ [3] based on [4]
h2 2 HCl + dust → 2 H 14×vth(HCl)×γ2×0.04×Sdust$\frac{1}{4}\times v_{\text{th}}(\text{HCl})\times \gamma_2 \times 0.04 \times S_{\text{dust}}$ [3], based on [6] and [7]
h3 HCl + water ice → H + Cl or H 14×vth(HCl)×γ3×Sice$\frac{1}{4}\times v_{\text{th}}(\text{HCl})\times \gamma_3 \times S_{\text{ice}}$ [3] based on [8] and [9]
h4 Cl2 + dust → Ø 14×vth(Cl_2)×γ4×102×Sdust$\frac{1}{4}\times v_{\text{th}}(\text{Cl_2})\times \gamma_4 \times 10^{-2} \times S_{\text{dust}}$ [3] based on [2]
h5 ClO + water ice → O 14×vth(ClO)×γ5×Sice$\frac{1}{4}\times v_{\text{th}}(\text{ClO})\times \gamma_5 \times S_{\text{ice}}$ [3], based on [2] \\ \hline
cl1 Cl + O3 → ClO + O2 2.8×1011exp(250T(z))2.8$\times 10^{-11} \, \exp{\left ( \frac{-250}{T(z)} \right )}$ [10]
cl2 ClO + O → Cl + O2 2.5×1011exp(110T(z))2.5$\times 10^{-11} \, \exp{\left ( \frac{110}{T(z)} \right )}$ [10]
cl3 ClO + ClO → Cl2 + O2 1.0×1012exp(1590T(z))1.0$\times 10^{-12} \, \exp{\left ( \frac{-1590}{T(z)} \right )}$ [10]
cl4 ClO + ClO → 2 Cl + O2 3.0×1011exp(2450T(z))3.0$\times 10^{-11} \, \exp{\left ( \frac{-2450}{T(z)} \right )}$ [10]
cl5 ClO + ClO → Cl + OClO 3.5×1013exp(1370T(z))3.5$\times 10^{-13} \, \exp{\left ( \frac{-1370}{T(z)} \right )}$ [10]
cl6 ClO + ClO + M → Cl2O2 + M k0=1.9×1032(298T(z))3.6k=3.7×1012(298T(z))1.6\begin{tabular}[c]{@{}l@{}}$k_0 = 1.9\times 10^{-32} \, \left ( \frac{298}{T(z)} \right )^{3.6}$\\ $k_{\infty} = 3.7\times 10^{-12} \, \left ( \frac{298}{T(z)} \right )^{1.6}$\end{tabular} [10]
cl7 Cl2O2 → ClO + ClO cl62.16×1027exp(8537T(z))$\frac{\text{cl6}}{2.16\times 10^{-27} \, \exp{\left ( \frac{8537}{T(z)} \right )}}$ [10]
cl8 Cl + H2 → HCl + H 3.9×1011exp(2310T(z))3.9$\times 10^{-11} \, \exp{\left ( \frac{-2310}{T(z)} \right )}$ [10]
cl9 Cl + HO2 → HCl + O2 4.4×10117.5×1011exp(620T(z))4.4$\times 10^{-11}$ - 7.5$\times 10^{-11} \, \exp{\left ( \frac{-620}{T(z)} \right )}$ [10]
cl10 Cl + HO2 → ClO + OH 7.5×1011exp(620T(z))7.5$\times 10^{-11} \, \exp{\left ( \frac{-620}{T(z)} \right )}$ [10]
cl11 Cl + H2O2 → HCl + HO2 1.1×1011exp(980T(z))1.1$\times 10^{-11} \, \exp{\left ( \frac{-980}{T(z)} \right )}$ [10]
cl12 ClO + OH → Cl + HO2 7.3×1012exp(300T(z))×0.947.3$\times 10^{-12} \, \exp{\left ( \frac{300}{T(z)} \right )} \times 0.94$ [10]
cl13 ClO + OH → HCl + O2 7.3×1012exp(300T(z))×0.067.3$\times 10^{-12} \, \exp{\left ( \frac{300}{T(z)} \right )} \times 0.06$ [10]
cl14 ClO + HO2 → HOCl + O2 2.2×1012exp(340T(z))2.2$\times 10^{-12} \, \exp{\left ( \frac{340}{T(z)} \right )}$ [10]
cl15 HCl + OH → Cl + H2O 1.7×1012exp(230T(z))1.7$\times 10^{-12} \, \exp{\left ( \frac{-230}{T(z)} \right )}$ [10]
cl16 HOCl + OH → ClO + H2O 3.0×1012exp(500T(z))3.0$\times 10^{-12} \, \exp{\left ( \frac{-500}{T(z)} \right )}$ [10]
cl17 CO + Cl + M → ClCO + M 2.5[M]1.3×1033(300T(z))3.82.5\, {[}M{]} \, 1.3$\times 10^{-33} \, \left ( \frac{300}{T(z)} \right )^{3.8}$ [11]
cl18 ClOO + Cl → ClO + ClO 1.2×10111.2$\times 10^{-11}$ [2]
cl19 ClOO + Cl → O2 + Cl2 2.3×10102.3$\times 10^{-10}$ [2]
cl20 ClOO + M → Cl + O2 + M 2.8×1010exp(1820T(z))[M]]2.8$\times 10^{-10} \, \exp{\left ( \frac{-1820}{T(z)} \right )}$ \, {[}M{]} [11]
cl21 HClO4 + OH → ClO4 + H2O 2.8×1010T(z)2.99exp(1664T(z))$\frac{2.8\times 10^{-10}}{T(z)^{2.99}} \, \exp{\left ( \frac{1664}{T(z)} \right )}$ [12]
cl22 Cl + O2 + M → ClOO + M 2.5[M]1.4×1033(300T(z))3.92.5\, {[}M{]} \, 1.4$\times 10^{-33} \, \left ( \frac{300}{T(z)} \right )^{3.9}$ [11]
cl23 Cl + Cl2O2 → Cl2 + ClOO 1.0×10101.0$\times 10^{-10}$ [11]
cl24 ClCO → CO + Cl [M]4.1×1010exp(2960T(z)){[}M{]} \, 4.1$\times 10^{-10} \, \exp{\left ( \frac{-2960}{T(z)} \right )}$ [11]
cl25 Cl2 + O($^1$D) → Cl2 + O [Cl2]14×2.7×1010{[}Cl$_2${]} \, $\frac{1}{4} \times 2.7\times 10^{-10}$ [2]
cl26 Cl2 + O($^1$D) → Cl + ClO 34×2.7×1010$\frac{3}{4} \times 2.7\times 10^{-10}$ [2]
cl27 Cl2 + OH → HOCl + Cl 2.6×1012exp(1100T(z))2.6$\times 10^{-12} \, \exp{\left ( \frac{-1100}{T(z)} \right )}$ [2]
cl28 Cl2 + H → HCl + Cl 8.0×1011exp(416T(z))8.0$\times 10^{-11} \, \exp{\left ( \frac{-416}{T(z)} \right )}$ [13]
cl29 HCl + O(1D) → HCl + O 0.12×1.5×1010[HCl]]0.12 $\times 1.5\times 10^{-10}$ \, {[}HCl{]} [2]
cl30 HCl + O(1D) → ClO + H 0.22×1.5×10100.22 $\times 1.5\times 10^{-10}$ [2]
cl31 HCl + O(1D) → Cl + OH 0.66×1.5×10100.66 $\times 1.5\times 10^{-10}$ [2]
cl32 HCl + O → OH + Cl 1.0×1011exp(3300T(z))1.0$\times 10^{-11} \, \exp{\left ( \frac{-3300}{T(z)} \right )}$ [2]
cl33 HCl + H → H2 + Cl 1.49×1011exp(1763T(z))1.49$\times 10^{-11} \, \exp{\left ( \frac{-1763}{T(z)} \right )}$ [14]
cl34 HOCl + O → ClO + OH 1.7×10131.7$\times 10^{-13}$ [11]
cl35 Cl + O3 + M → ClO3 + M 2.5[M]×1.0×10312.5 \, {[}M{]} \, $\times 1.0\times 10^{-31}$ [15], based on [16]
cl36 ClO + ClO3 → ClOO + OClO 1.85×1018exp(2417T(z))T(z)2.281.85$\times 10^{-18} \, \exp{\left ( \frac{-2417}{T(z)} \right )} \, T(z)^{2.28}$ [15], based on [17]
cl37 ClO + ClO3 → OClO + OClO 1.42×1018exp(2870T(z))T(z)2.111.42$\times 10^{-18} \, \exp{\left ( \frac{-2870}{T(z)} \right )} \, T(z)^{2.11}$ [15], based on [17]
cl38 ClO + ClO3 + M → Cl2O4 + M k0=1.43×101T(z)10.19exp(1597T(z))k=1.43×1010exp(82T(z))T(z)0.094\begin{tabular}[c]{@{}l@{}}$k_0 = \frac{1.43\times 10^{-1}}{T(z)^{10.19}} \, \exp{\left ( \frac{-1597}{T(z)} \right )}$\\ $k_{\infty} = 1.43\times 10^{-10} \, \exp{\left ( \frac{-82}{T(z)} \right )} \, T(z)^{0.094}$\end{tabular} [17]
cl39 ClO3 + OH → HClO4 6.67×10136.67$\times 10^{-13}$ [15], based on [16]
cl40 ClO3 + OH + M → HClO4 + M k0=1.94×1036T(z)15.3exp(5542T(z))k=3.2×1010exp(25T(z))T(z)0.07\begin{tabular}[c]{@{}l@{}}$k_0 = \frac{1.94\times 10^{36}}{T(z)^{15.3}} \, \exp{\left ( \frac{-5542}{T(z)} \right )}$\\ $k_{\infty} = 3.2\times 10^{-10} \, \exp{\left ( \frac{-25}{T(z)} \right )} \, T(z)^{0.07}$\end{tabular} [15], based on [18]
cl41 ClO3 + OH → OClO + HO2 2.1×1010exp(18T(z))T(z)0.092.1$\times 10^{-10} \, \exp{\left ( \frac{-18}{T(z)} \right )} \, T(z)^{0.09}$ [15], based on [18]
cl42 OClO + O + M → ClO3 + M k0=3.0×1031(298T(z))3.1k=8.3×1012(298T(z))\begin{tabular}[c]{@{}l@{}}$k_0 = 3.0\times 10^{-31} \, \left ( \frac{298}{T(z)} \right )^{3.1}$\\ $k_{\infty} = 8.3\times 10^{-12} \, \left ( \frac{298}{T(z)} \right )$\end{tabular} [2]
cl43 OClO + O3 → ClO3 + O2 2.1×1012exp(4700T(z))2.1$\times 10^{-12} \, \exp{\left ( \frac{-4700}{T(z)} \right )}$ [2]
cl44 ClO4 + Cl → ClO3 + ClO 8.05×1011T(z)0.158exp(49T(z))8.05$\times 10^{-11} \, T(z)^{0.158} \exp{\left ( \frac{-49}{T(z)} \right )}$ [17]
cl45 ClO4 + HOCl → ClO + HClO4 1.35×1018T(z)1.73exp(1017T(z))1.35$\times 10^{-18} \, T(z)^{1.73} \exp{\left ( \frac{1017}{T(z)} \right )}$ [19]
cl46 HOCl+ Cl → Cl2 + OH 0.935×3.4×1012exp(130T(z))0.935$\times 3.4\times 10^{-12} \, \exp{\left ( \frac{-130}{T(z)} \right )}$ [2] and [15]
cl47 HOCl+ Cl → HCl + ClO 0.065×3.4×1012exp(130T(z))0.065$\times 3.4\times 10^{-12} \, \exp{\left ( \frac{-130}{T(z)} \right )}$ [2] and [15]
cl48 OClO+ O → ClO + O2 2.4×1012exp(960T(z))2.4$\times 10^{-12} \, \exp{\left ( \frac{-960}{T(z)} \right )}$ [11]
cl49 OClO+ OH → HOCl + O2 1.4×1012exp(600T(z))1.4$\times 10^{-12} \, \exp{\left ( \frac{600}{T(z)} \right )}$ [2]
cl50 OClO+ Cl → ClO + ClO 3.4×1011exp(160T(z))3.4$\times 10^{-11} \, \exp{\left ( \frac{160}{T(z)} \right )}$ [2]

Notes. Values between brackets are number densities in cm−3. [M] is the number density of the third body for three-body reactions. Sdust and Sice are the surface area of dust and water ice, respectively, in cm−1.

vth(species) is the thermal speed of the considered species in cm/s, computed as vth(z)=8RT(z)πM$v_{\text{th}}(z)=\sqrt{\frac{8RT(z)}{\pi M}}$, with R the ideal gas constant, T(z) the temperature at altitude level z and M the molar mass of the considered species in g/mol.

[1] - Heays et al. (2017), [2] - Burkholder et al. (2019), [3] - Taysum et al. (2024), [4] - Keller et al. (2006), [5] - Boynton et al. (2009), [6] - Huynh & McNeill (2020), [7] - Huynh & McNeill (2021), [8] - Hynes et al. (2001), [9] - Kippenberger et al. (2019), [10] - Sander et al. (2019), [11] -Atkinson et al. (2007), [12] - Zhu & Lin (2010), [13] - Berho et al. (1999), [14] - Neufeld & Wolfire (2009), from the KIDA database (Wakelam et al. 2012), [15] - Catling et al. (2010), [16] - Simonaitis & Heicklen (1975), [17] - Xu & Lin (2003), [18] - Zhu & Lin (2001), [19] - Xu & Lin (2010)

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.