Open Access

Table 1.

Velocity redshift dependence implemented in flip to convert Hubble diagram residuals into peculiar velocities.

Name Watkins Low-z Hubble high-order Full
pi zobs,i zobs,i zobs,i, q0, j0 zobs,i,D(zobs,i), H(zobs,i)/h

J(pi) z obs , i 1 + z obs , i $ \frac {z_{\mathrm {obs},i}}{1+z_{\mathrm {obs},i}} $ zobs,i z obs , i ( 1 + ( 1 / 2 ) ( 1 q 0 ) z obs , i ( 1 / 6 ) ( 1 q 0 3 q 0 2 + j 0 ) z obs , i 2 ) 1 + z obs , i $ \frac {z_{\mathrm {obs},i} \left (1 + (1/2) (1 - q_0) z_{\mathrm {obs},i} - (1/6) (1 - q_0 - 3 q_0^2 + j_0) z_{\mathrm {obs},i}^2\right )}{1+z_{\mathrm {obs},i}} $ ( ( 1 + z obs , i ) c ( H ( z obs , i ) / h ) D ( z obs , i ) 1 ) 1 $ \left (\frac {(1+z_{\mathrm {obs},i})c}{(H(z_{\mathrm {obs},i})/h) D(z_{\mathrm {obs},i})} - 1 \right )^{-1} $

Notes. In addition to the terms defined in the text, the q0 and j0 parameters are, respectively, the deceleration and jerk parameters in the higher-order development of the Hubble law.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.