Open Access

Table 3.

List of the bivariate features used in this work grouped under the families introduced in Sect. 3.2 (Tschopp & Hernandez-Rivera 2017).

Minkowski family
City_Block, L1-norm dCity = ∑|gi − ri|
Euclidean, L2-norm d Eucl = ( g i r i ) 2 $ d_{\text{Eucl}}=\sqrt{\sum(g_i - r_i)^2} $
Chebyshev, L-norm dCv = maxi|gi − ri|

L1 family

Sørensen d = | g i r i | ( g i + r i ) $ d_{\text{S}{\o}}=\frac{\sum|g_i - r_i|}{\sum(g_i + r_i)} $
Gower dGw = ∑|gi − ri|/b
Kulczynski d Kul = | g i r i | min ( g i , r i ) $ d_{\text{Kul}}=\frac{\sum|g_i - r_i|}{\sum\min(g_i,r_i)} $
Canberra d Canb = | g i r i | ( g i + r i ) $ d_{\text{Canb}}=\sum{\frac{|g_i - r_i|}{(g_i + r_i)}} $
Lorentzian dLor = ∑ln(1 + |gi − ri|)

Intersection family

Intersection dIs = ∑|gi − ri|/2
Wave_Hedges d WH = | g i r i | max ( g i , r i ) $ d_{\text{WH}}=\sum{\frac{|g_i - r_i|}{\max(g_i,r_i)}} $
Motyka s Mo = max ( g i , r i ) ( g i + r i ) $ s_{\text{Mo}}=\frac{\sum\max(g_i,r_i)}{\sum(g_i + r_i)} $
Czekanowski d Cz = | g i r i | ( g i + r i ) $ d_{\text{Cz}}=\frac{\sum|g_i-r_i|}{\sum(g_i + r_i)} $
Ruzicka s Mo = min ( g i , r i ) max ( g i , r i ) $ s_{\text{Mo}}=\frac{\sum\min(g_i,r_i)}{\sum\max(g_i,r_i)} $

Inner product family

Inner_Product sIp = ∑giri
Harmonic_Mean s Hm = 2 g i r i ( g i + r i ) $ s_{\text{Hm}} = 2\frac{\sum g_i r_i}{(g_i + r_i)} $
Cosine s Cos = g i r i g i 2 r i 2 $ s_{\text{Cos}}=\frac{\sum g_i r_i}{\sqrt{\sum g_i^2\sum r_i^2}} $
Jaccard d Ja = ( g i r i ) 2 ( g i 2 + r i 2 g i r i ) $ d_{\text{Ja}}=\frac{\sum(g_i - r_i)^2}{\sum(g_i^2 + r_i^2 - g_i r_i)} $
Dice d Di = ( g i r i ) 2 ( g i 2 + r i 2 ) $ d_{\text{Di}}=\frac{\sum(g_i - r_i)^2}{\sum(g_i^2 + r_i^2)} $

Fidelity family

Fidelity s Fid = g i r i $ s_{\text{Fid}}=\sum\sqrt{g_i r_i} $
Bhattacharyya d Ba = ln g i r i $ d_{\text{Ba}}=-\ln\sum\sqrt{g_i r_i} $
Squared-chord d SC = ( g i r i ) 2 $ d_{\text{SC}}=\sum(\sqrt{g_i}-\sqrt{r_i})^2 $
χ2 family
Squared_Euclidean dSE = ∑(gi − ri)2
Pearson χ2 dPea = ∑(gi − ri)2/ri
Neyman χ2 dNey = ∑(gi − ri)2/gi
χ2 d Sq χ = ( g i r i ) 2 g i + r i $ d_{\text{Sq}\chi}=\sum\frac{(g_i - r_i)^2}{g_i + r_i} $
Divergence d Div = 2 ( g i r i ) 2 ( g i + r i ) 2 $ d_{\text{Div}} = 2\sum\frac{(g_i - r_i)^2}{(g_i + r_i)^2} $
Clark d Cl = [ | g i r i | ( g i + r i ) ] 2 $ d_{\text{Cl}}= \sqrt{\sum\left[\frac{|g_i - r_i|}{(g_i + r_i)}\right]^2} $
Additive_Symmetric χ2 d Ad χ = ( g i r i ) 2 ( g i + r i ) g i r i $ d_{\text{Ad}\chi}= \sum\frac{(g_i - r_i)^2(g_i + r_i)}{g_i r_i} $

Shannon’s entropy family

Kullback-Leibler dKL = ∑giln(gi/ri)
Jeffreys dJef = ∑(gi − ri)ln(gi/ri)
K-divergence dKdv = ∑giln(2gi/(gi + ri))
Topsøe d Top = ( g i ln 2 g i g i + r i + r i ln 2 r i g i + r i ) $ d_{\text{Top}}=\sum (g_i \ln\frac{2g_i}{g_i + r_i}+r_i \ln\frac{2r_i}{g_i + r_i}) $
−(gi + ri)/2 * ln((gi + ri)/2))

Combination family

Taneja d Tan = ( g i + r i ) / 2 ln ( g i + r i 2 g i r i ) $ d_{\text{Tan}}=\sum (g_i + r_i)/2\ln(\frac{g_i + r_i}{2\sqrt{g_i r_i}}) $
Kumar-Johnson d KJ = ( g i 2 r i 2 ) 2 2 ( g i r i ) 3 / 2 $ d_{\text{KJ}}=\sum \frac{(g_i^2 - r_i^2)^2}{2(g_i r_i)^{3/2}} $
Average(L1-L) davL = ∑(|gi − ri|+maxi|gi − ri|)/2

Vicissitude family

Vicis-Wave_Hedges dVwh = ∑|gi − ri|/min(gi, ri)
Vicis-Symmetric χ32 dvsχ32 = ∑(gi − ri)2/max(gi, ri)
Max-Symmetric χ2 dMaxS = max(∑(gi − ri)2/gi, ∑(gi − ri)2/ri)
Min-Symmetric χ2 dMinS = min(∑(gi − ri)2/gi, ∑(gi − ri)2/ri)

Notes. The functions used to compute distance or similarity measures require vectors X and Y (in this case, the g- and r-band light curves) and return the corresponding similarities or distances per the various measures given above.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.