Open Access

Table 5.

No noise case, Cramer-Rao bounds.

Statistics TVir RMax ζ
(Results are log10)
ϕ 3 D PS $ \phi^{\mathrm{PS}}_{\mathrm{3D}} $ 7.42 2.01 1.50
ϕ ¯ 2 : 1 , 2 , 3 , 4 PS $ \bar{\phi}_{\ell^2:1,2,3,4}^{\mathrm{PS}} $ 7.25 2.05 1.37
ϕ ¯ 1 , 2 : 1 , 2 PS $ \bar{\phi}_{\ell^1,\ell^2:1,2}^{\mathrm{PS}} $ 7.13 2.04 1.28
ϕ ¯ 2 : 1 , 2 , 3 , 4 WM $ \bar{\phi}_{\ell^2:1,2,3,4}^{\mathrm{WM}} $ 5.45 0.93 −0.22
ϕ ¯ 1 , 2 : 1 , 2 WM $ \bar{\phi}_{\ell^1,\ell^2:1,2}^{\mathrm{WM}} $ 6.25 1.00 0.43
ϕ ¯ 2 : 1 , 2 , 3 , 4 WST m $ \bar{\phi}_{\ell^2:1,2,3,4}^{\mathrm{WST}_m} $ 6.00 0.98 0.27
ϕ ¯ 1 , 2 : 1 , 2 WST m $ \bar{\phi}_{\ell^1,\ell^2:1,2}^{\mathrm{WST}_m} $ 5.99 1.01 0.30
ϕ ¯ 2 : 1 , 2 , 3 , 4 WST w $ \bar{\phi}_{\ell^2:1,2,3,4}^{\mathrm{WST}_w} $ 5.81 0.58 −0.07
ϕ ¯ 1 , 2 : 1 , 2 WST w $ \bar{\phi}_{\ell^1,\ell^2:1,2}^{\mathrm{WST}_w} $ 5.79 0.60 −0.05

Notes. Cramer-Rao bounds for all of our summary statistics in the case where we have no noise. The bound establishes a lower bound on the variance, i.e. the smallest uncertainty achievable for an unbiased estimate on a given parameter.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.