Open Access

Table A.3

Multi-wavelength properties of the 3 GHz detected VLASS × GCNS population sorted by increasing distance d. The symbols GBPGRP, SI, and log LX correspond to distance, Gaia BP–RP colour, Stokes I flux density, and logarithmic soft (0.1-2.4 keV) X-ray luminosity, respectively. The last column refers to the VLASS epoch from which the radio data is used for this study (i.e. whether the value of SI is quoted from VLASS Epoch 1 or 2).

Common name Object(a) type Spectral type d(b) (pc) GBPGRP(b) (mag) SI(c) (mJy) log LX(d) (erg s−1) Epoch(e)
UV Cet Eruptive* M5.5Ve(1) 2.67 3.83 2.32 ± 0.31 27.66(66) 2
WX UMa Eruptive* M6V(2) 4.91 3.85 7.64 ± 0.22 27.56(67) 2
GJ 1116 B * M7V(3) 5.10 4.04 4.99 ± 1.07 27.90(68) 1
GJ 1116 A * M7V(4) 5.15 3.78 1.32 ± 0.21 27.90(69) 2
LSR J1835+3259 * M8.5V(5) 5.69 5.15 1.30 ± 0.35 < 24.51(70) 1
GJ 896 A Eruptive* M3.5Ve(6) 6.26 2.66 3.43 ± 0.24 28.94 2
GJ 4274 Eruptive* M4.5Ve(7) 7.23 3.30 1.04 ± 0.26 27.92 2
FK Aqr BY Dra M2Ve+M3Ve(8) 8.90 2.27 4.20 ± 0.28 29.42 2
V374 Peg Eruptive* M3.5Ve(9) 9.10 2.87 1.70 ± 0.33 28.48 1
AT Mic B * M4Ve(10) 9.81 3.13 2.34 ± 0.44 29.54 2
AT Mic A * M4Ve(11) 9.92 3.03 3.60 ± 0.50 29.55 1
LSR J0510+2713 * M7V(12) 10.28 4.54 1.32 ± 0.31 27.88 2
δ Cap Am star kA5hF0mF2III(13) 11.64 0.69 1.48 ± 0.33 29.33 2
2MASS J05172292-3521545 * M4V(14) 11.70 2.81 2.17 ± 0.32 28.98 2
LP 326-38 * M4Ve(15) 13.05 2.78 2.31 ± 0.27 28.32 2
α For B * (K-type) K2V(16) 14.08 1.11 5.22 ± 0.35 29.75 1
GJ 4338 * M4V(17) 15.05 2.94 4.08 ± 0.25 29.21 2
GJ 2123 B BY Dra M4Ve(18) 15.74 2.96 2.23 ± 0.57 29.58 1
LP 86-173 * M4.5V(19) 16.28 2.87 9.68 ± 0.22 28.65 1
V1274 Her BY Dra M3.5V+M4.5V(20) 16.42 3.54 1.52 ± 0.32 28.39 2
HD 43162C * M5V(21) 16.67 2.78 3.39 ± 0.31 24.80(71) 1
V833 Tau BY Dra K5Ve(22) 17.40 1.38 5.64 ± 0.23 29.90 2
2MASS J14172209+4525461 * M5V(23) 18.99 3.06 1.96 ± 0.23 28.44 2
GJ 4185 Eruptive* M3.5V(24) 19.70 2.79 3.44 ± 0.31 29.18 1
CR Dra * M1.5Ve(25) 20.15 2.17 1.85 ± 0.27 29.56 1
WW PsA BY Dra M4.5V(26) 20.87 2.78 4.45 ± 0.26 29.63 1
V775 Her RS CVn K0Ve+M3Ve(27) 21.33 1.21 1.75 ± 0.28 29.95 2
σ2 CrB (TZ CrB) RS CVn F9V+G0V(28) 22.70 0.81 4.14 ± 0.33 30.71 1
λ And RS CVn G8IV+?(29) 25.92 1.27 3.88 ± 0.20 30.83 2
GJ 4282 A * M2.5V(30) 26.14 2.62 1.56 ± 0.26 29.29 2
GJ 3237 Eruptive* M5V(31) 26.78 3.03 1 .91 ± 0.26 28.50 1
V478 Lyr RS CVn G8V+M3V(32) 27.06 0.98 3.15 ± 0.29 30.18 1
V711 Tau RS CVn K1IV+G5V(33) 29.43 1.24 31.27 ± 0.28 31.23 2
α2 CVn α2 CVn A0VpSiCrEuHg(34) 30.56 0.22 1.77 ± 0.26 28.89 1
HD 314741 * (K-type) K5Ve(35) 31.45 1.66 2.10 ± 0.32 29.74 2
V815 Her RS CVn G6V+M3V(36) 32.09 0.92 2.13 ± 0.31 30.50 2
δ And B * M2V(37) 32.34 2.29 1 . 43 ± 0.29 28.46 2
HD 159911 * (K-type) K7IV(38) 33.21 1.54 3.06 ± 0.29 30.34 2
2MASS J21100461-1920302 * M4V(39) 33.60 3.05 2.00 ± 0.35 29.74 2
V1198 Ori RS CVn G6IV+G1V(40) 33.62 0.91 1.21 ± 0.34 30.24 2
2MASS J20003177+5921289 * M4V(41) 34.43 2.87 0.93 ± 0.22 29.10 2
2MASS J09165078+2448559 * M4.5V(42) 35.10 3.19 0.94 ± 0.26 28.04 2
GS Leo BY Dra G9V+K4V(43) 35.43 1.06 1.93 ± 0.29 30.08 1
2MASS J21374019+0137137 * M4.5V(44) 35.91 2.97 1.96 ± 0.30 29.40 2
IZ Boo * M3Ve(45) 36.00 2.40 2.07 ± 0.24 29.35 1
σ Gem RS CVn K1IIIe+dG/K(46) 36.87 1.35 64.05 ± 0.26 31 .07 1
II Peg RS CVn K2IV+M0-3V(47) 39.13 1.38 18.51 ± 0.29 31.17 1
V376 Cep RS CVn G4p+?(48) 39.93 0.91 4.06 ± 0.29 30.60 2
2MASS J03510078+1413398 * M4.5V(49) 40.03 2.94 2.06 ± 0.51 29.30 2
2MASS J21103096-2710513 * M5V(50) 40.26 3.75 2.72 ± 0.35 28.93 1
VY Ari RS CVn K3-4V/IV+dM(51) 41.49 1.25 8.11 ± 0.28 31 .05 1
AR Lac RS CVn G2IV+K0IV(52) 42.51 0.96 8.14 ± 0.21 31.12 2
V1044 Sco RS CVn G9V+M0V(53) 42.91 1.10 2.34 ± 0.41 30.28 1
LP 732-30 * M4.5V(54) 44.16 3.12 11.71 ± 0.34 < 28.37 1
MR Del BY Dra K2V+K6V(55) 45.09 1.20 1.37 ± 0.31 30.29 1
AR Psc RS CVn KlIV+G7V(56) 45.49 1.14 2.90 ± 0.26 30.98 1
2MASS J13582164-0046262 * M5.5γ(57) 45.90 3.49 2.62 ± 0.61 < 28.40 1
2MASS J20100002-2801410 * M3 Ve(58) 46.41 2.79 1.94 ± 0.43 29.58 2
V818 Tau RS CVn G6V+K6V(59) 46.64 0.96 1.15 ± 0.34 29.76 2
BH CVn (HR 5110) RS CVn F2IV+K2IV(60) 46.89 0.65 17.92 ± 0.24 30.75 2
V402 Hya BY Dra K0-1V(61) 47.54 1.17 3.04 ± 0.41 30.34 1
2MASS J05184455+4629597 * M4.5V(62) 47.85 3.02 1.07 ± 0.26 28.55 2
2MASS J14333139+3417472 * M7V(63) 48.20 3.75 1.38 ± 0.30 27.92(72) 2
2MASS J05082729-2101444 * M5V(64) 48.30 3.37 4.42 ± 0.29 28.88 1
TWA 5 A T Tauri M2Ve(65) 49.67 2.40 3.54 ± 0.27 30.14 2

Notes. (a) Asterisks * denote M dwarfs unless specified otherwise. Eruptive* denotes eruptive variable stars classified by SIMBAD. (b) Distance d (derived from the parallaxes) and Gaia colour GBPGRP of each stellar systems are given by the Gaia Catalogue of Nearby Stars (Gaia Collaboration 2021b), which quotes measurements from Gaia Early Data Release 3 (Gaia Collaboration 2021a). (c) Total flux density SI is given by the VLASS Quick Look (QL) catalogue (Gordon et al. 2021). SI from Epoch 1 is adjusted to SVLASS Ep.1 = 0.87SI, as the Epoch 1 flux densities in the VLASS Quick Look imaging are known to be systematically underestimated due to multiple calibration issues (e.g. an antenna pointing error that affected two-thirds of the antennas), which were fixed for subsequent campaigns of VLASS (see Lacy et al. 2019 and Gordon et al. 2021 for more details). The Stokes I flux density from Epoch 2 is unaffected by these issues (i.e. SVLASS Ep.2 = SI). (d) X-ray luminosity XL of each stellar system is given by the Second ROSAT all-sky survey source catalogue (2RXS; Boller et al. 2016), unless specified otherwise. The upper limits of XL for LP 732-30 and 2MASS J13582164-0046262 are derived assuming the 2RXS flux limit ≈10−13 erg cm−2 s−1 (Boller et al. 2016). (e) In the case where a stellar radio source is detected in both Epochs 1 and 2, we choose the epoch that contains a greater value of SI. For the TWA 5 system, there exists a very young brown dwarf companion TWA 5 B of the primary T Tauri star TWA 5 A, with an angular separation of around 2″. Their very large separation (> 100 AU) precludes any magnetic or chromospheric interactions between them. Therefore, the dominant radio emission must be isolated to either component. Due to their proximity and the fact that these two types of YSOs are both capable of generating strong radio emission, it is possible that TWA 5 B may contribute to the radio emission as well. However, since the VLASS radio source is located much closer to A than to B (see Appendix B.4 for more details), we conclude the TTS is indeed the predominant radio emitter.

References. (1) Samus’ et al. (2017); (2) Reid et al. (1995); (3) Newton et al. (2014); (4) Newton et al. (2014); (5) Deshpande et al. (2012); (6) Davison et al. (2015); (7) Davison et al. (2015); (8) Özeren et al. (1999); (9) Davison et al. (2015); (10) Baron et al. (2019); (11) Baron et al. (2019); (12) Newton et al. (2014); (13) Gray et al. (2006); (14) Scholz et al. (2005); (15) Lepine et al. (2013); (16) Fuhrmann et al. (2016); (17) Shkolnik et al. (2009); (18) Alfonso-Garzón et al. (2012); (19) Alonso-Floriano et al. (2015); (20) Clark et al. (2022); (21) Bowler et al. (2019); (22) Naftilan & Fairchild (1993); (23) Gigoyan et al. (2010); (24) Shkolnik et al. (2009); (25) Petit et al. (2014); (26) Shkolnik et al. (2009); (27) Alekseev & Kozlova (2000); (28) Strassmeier & Rice (2003); (29) Gray et al. (2003); (30) Shkolnik et al. (2009); (31) Newton et al. (2014); (32) Kozhevnikova & Alekseev (2015); (33) Garcia-Alvarez et al. (2003); (34) Bychkov et al. (2021); (35) Torres et al. (2006); (36) Fekel et al. (2005a); (37) Tokovinin (2018); (38) Bowler et al. (2019); (39) Shkolnik et al. (2017); (40) Cutispoto (1995); (41) Shkolnik et al. (2009); (42) Reid et al. (2007); (43) Cutispoto et al. (1999); (44) Alonso-Floriano et al. (2015); (45) Lepine et al. (2013); (46) Makarov (2003); (47) Berdyugina et al. (1998); (48) Pourbaix et al. (2004); (49) Alonso-Floriano et al. (2015); (50) Riaz et al. (2006); (51) Favata et al. (1997); (52) Zboril et al. (2005); (53) Strassmeier et al. (2012); (54) Reid & Gizis (2005); (55) Pribulla et al. (2009); (56) Fekel (1996); (57) Gagné et al. (2015); (58) Riedel et al. (2017); (59) Avvakumova et al. (2013); (60) Eker & Doherty (1987); (61) Patel et al. (2016); (62) Alonso-Floriano et al. (2015); (63) Wang et al. (2022); (64) Riaz et al. (2006); (65) Neuhäuser et al. (2000); (66) Freund et al. (2022); (67) Callingham et al. (2021b); (68) Schmitt et al. (1995); (69) Schmitt et al. (1995); (70) Berger et al. (2008); (71) Webb et al. (2020); (72) Callingham et al. (2021b);

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.