Table 1
Main characteristics of the ATOMIUM sources.
Target | Stellar type | Distance (pc) | Angular diameter (mas) | R mag(a) | Teff (K) | Mass-loss rate(d) (M⊙ yr−1) |
---|---|---|---|---|---|---|
S Pav | AGB O-rich | 174 ± 19 (1) | 11.61(b) | 7.60 ± 0.03 | 3100 (4) | 8 × 10−8 (5) |
T Mic | AGB O-rich | 186 ± 8 (1) | 9.26(b) | 7.30 ± 0.03 | 3300 (4) | 8 × 10−8 (5) |
U Del | AGB O-rich | 335 ± 11 (1) | 7.90 ± 0.50 (2) | 6.31 ± 0.04 | 3000 (19) | 1.5 × 10−7 (5) |
V PsA | AGB O-rich | 304 ± 11 (1) | 11.4(c) | 8.03 ± 0.04 | 2400 (5) | 3 × 10−7 (5) |
SV Aqr | AGB O-rich | 431 ± 13 (1) | 5.7(c) | 9.20 ± 0.03 | 3400 (4) | 3 × 10−7 (5) |
R Hya | AGB O-rich | 148 ± 10 (1) | 23.7 ± 1.0 (2) | 5.66 ± 0.04 | 2100 (6) | 4 × 10−7 (6) |
U Her | AGB O-rich | 270 ± 20 (20) | 11.2 ± 0.6 (2) | 8.83 ± 0.03 | 2100 (19) | 5.9 × 10−7 (7) |
π1 Gru | AGB S-type | 162 ± 12 (1) | 18.37 ± 0.18 (3) | 5.66 ± 0.04 | 2300 (6) | 7.7 × 10−7 (8) |
R Aql | AGB O-rich | 234 ± 9 (1) | 10.9 ± 0.3 (2) | 7.52 ± 0.03 | 2800 (19) | 1.1 × 10−6 (7) |
W Aql | AGB S-type | 374 ± 19 (1) | 11.6 ± 1.8 (2) | 10.09 ± 0.04 | 2800 (6) | 3 × 10−6 (9) |
GY Aql | AGB O-rich | 340 ± 30 (20) | 20.46(b) | 10.44 ± 0.04 | 3100 (4) | 4.1 × 10−6 (10) |
AH Sco | RSG | 2260 ± 190 (13) | 5.81 ± 0.15 (14) | 7.13 ± 0.04 | 3682 ± 190 (14) | Unknown |
KW Sgr | RSG | 2400 ± 300 (14) | 3.91 ± 0.25 (14) | 8.81 ± 0.04 | 3720 ± 183 (14) | Unknown |
VX Sgr | RSG | 1560 ± 110 (15) | 8.82 ± 0.50 (16) | 8.94 ± 0.04 | 3150 (17) | [1 – 6] ×10−5 (6, 17, 18) |
RW Sco | AGB O-rich | 578 ± 33 (1) | 4.87(b) | 13.13 | 3300 (4) | 2.1 × 10−7 (12) |
IRC-10529 | AGB OH/IR | 620 (6) | 6.47(b) | 19.17 | 2700 (6) | 4.5 × 10−6 (6) |
IRC+10011 | AGB OH/IR | 740 (11) | 6.53(b) | 18.68 | 2700 (6) | 1.9 × 10−5 (6) |
Notes. The stars listed in the second part of the table were not observed with ZIMPOL due to their faint magnitude in the R band. (a)The R magnitudes were obtained from the USNO-B catalog (Monet et al. 2003). (b)These angular diameters were derived from the bolometric luminosity, effective temperature and distance (Decin et al. 2020). (c)These angular diameters were derived using the magnitude-color relation of van Belle et al. (1999). (d)Mass-loss rates from references (5)–(10) and (12) are derived from the 1D modeling of their CO rotational line emission. For VX Sgr, in (17), the authors model the thermal emission from dust from the optical to the far-infrared, and assume a gas-to-dust ratio of 200 from the litterature. (18) compiles various mass-loss diagnostics of VX Sgr: H2O and OH maser emissions, infrared excess, and mid- and far-infrared photometry and imaging.
References. (1) Gaia Collaboration (2023); (2) Richichi et al. (2005); (3) Paladini et al. (2018); (4) Marigo et al. (2008); (5) Olofsson et al. (2002); (6) De Beck et al. (2010); (7) Young (1995); (8) Doan et al. (2017); (9) Ramstedt et al. (2017); (10) Loup et al. (1993); (11) Olivier et al. (2001); (12) Groenewegen et al. (1999); (13) Chen & Shen (2008); (14) Arroyo-Torres et al. (2013); (15) Xu et al. (2018); (16) Chiavassa et al. (2010); (17) Liu et al. (2017); (18) Chapman & Cohen (1986); Mauron & Josselin (2011); Gordon et al. (2018); Gail et al. (2020); (19) Decin et al. (2020); (20) Andriantsaralaza et al. (2022).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.