Issue 
A&A
Volume 666, October 2022



Article Number  C4  
Number of page(s)  4  
Section  Interstellar and circumstellar matter  
DOI  https://doi.org/10.1051/00046361/201730944e  
Published online  18 October 2022 
Lowtemperature MIR to submillimeter mass absorption coefficient of interstellar dust analogues
II. Mg and Ferich amorphous silicates^{★} (Corrigendum)
^{1}
IRAP, Université de Toulouse, CNRS, UPS,
9 avenue colonel Roche,
BP 44346,
31028
Toulouse cedex 4, France
email: karine.demyk@irap.omp.eu
^{2}
UMET, UMR 8207,
Université Lille 1, CNRS,
59655
Villeneuve d’Ascq, France
^{3}
Ligne AILES – Synchrotron SOLEIL, L’Orme des Merisiers,
91192
GifsurYvette, France
^{4}
LPCNO, Université de Toulouse, CNRS, INSA, UPS,
135 avenue de Rangueil,
31077
Toulouse, France
Key words: dust, extinction / submillimeter: ISM / infrared: ISM / methods: laboratory: solid state / astrochemistry / errata, addenda
Data from this article are publicly available through the STOPCODA (SpecTroscopy and Optical Properties of Cosmic Dust Analogues) database of the SSHADE infrastructure of solid spectroscopy (https://doi.org/10.26302/SSHADE/STOPCODA). The dataset are accessible via the following links: https://www.sshade.eu/data/experiment/EXPERIMENT_KD_20170822 and https://www.sshade.eu/data/experiment/EXPERIMENT_KD_20170823
We would like to draw attention to the fact that the mass absorption coefficients (MACs) presented in the paper “Lowtemperature MIR to submillimeter mass absorption coefficient of interstellar dust analogues. II. Mg and Ferich amorphous silicates” published in A&A 606, A50 (2017) are the MACs of the grains in the polyethylene matrix and not in vacuum. Indeed, Eq. (4) in Demyk et al. (2017) provides the MAC for the isolated grains in the matrix. The additional step to correct for the effect of the matrix, which is detailed in Mennella et al. (1998), was not done in Demyk et al. (2017). Therefore, in order to compare the experimental MACs presented in Demyk et al. (2017) with those calculated from optical constants available in databases or in cosmic dust models, it is necessary to perform the calculations in the same medium as that of the experimental data. This was not done in Demyk et al. (2017) in which Sect. 4.3, Table 2, Fig. 10, and Figs. A.1–A.8 compare MACs that are not comparable: the MAC for grains in polyethylene (PE) for the measurements and the MAC for grains in vacuum for the cosmic dust models. We provide here new versions of Table 2 and Figs. 10 and A.1–A.8 of Demyk et al. (2017) in which the MACs for the silicates from astronomical models are calculated in an ambient medium of refractive index n = 1.51 similar to that of the pellets (polyethylene). Table 1 and Fig. 1 of the corrigendum replace Table 2 and Fig. 10 of Demyk et al. (2017), respectively. Figures A.1–A.8 of the corrigendum replace Figs. A.1–A.8 of Demyk et al. (2017).
The main conclusions of the comparison of the experimental MAC with the MAC for cosmic dust models have not changed: in the 100 μm–1 mm range, the measured MAC is higher than that of cosmic models (see Table 1, Fig. 1, and Figs A.1–A.8). The factor of enhancement compared to the models depends on the sample and on the wavelength. It is in the range from 1 to 10 at 300 K and from 1 to 7 at 10 K, the highest factor being found at 500 and 850 μm. Considering the MAC averaged over all the samples, the value of 〈MAC〉_{all} at 10 K is a little more than twice that of the modeled MAC in the range from 500 μm to 1 mm.
This also affects the comparison with previous experimental data if they are corrected for the effect of the matrix. Mennella et al. (1998) indicated that the matrixcorrection factor is of the order of 1.3 for amorphous fayalite. Therefore, the MAC presented in Demyk et al. (2017) should be divided by a similar factor to be compared with experimental data from Mennella et al. (1998). However, for a more reliable comparison, we advise the use of the optical constants derived from these MACs by Demyk et al. (2022) to simulated the MAC of the grains in a vacuum.
Appendix A Comparison with astronomical models
Figures A.1 to A.8 show the comparison of the MAC for each sample with the MAC calculated for the astrosil model (Li & Draine 2001) and for the THEMIS model (Jones et al. 2013). The calculations were performed using Mie theory (Bohren & Huffman 1998) for a spherical particle with a size of 100 nm, for spherical grain populations with a lognormal size distribution centered at 1 μm, and for a CDE distribution (green). We note that to be comparable with the experimental data, the MAC are modelled in PE and not in vacuum.
Fig. A.1 Comparison of the MAC of sample Е10 with the MAC calculated for astronomical dust models. The MAC calculated with the astrosil is shown for a 0.1 μm size grain (black), for a lognormal grain size distribution with a mean diameter of 1 μm for spherical grains (magenta), and for a CDE distribution (green). The MAC calculated with the THEMIS dust model is shown for a spherical grain of 100 nm in diameter for amorphous forsterite (purple) and amorphous enstatite (orange). 
Fig. A.2 Comparison of the MAC of sample E10R with the MAC calculated for astronomical dust models. The MAC calculated with the astrosil is shown for a 0.1 μm size grain (black), for a lognormal grain size distribution with a mean diameter of 1 μm for spherical grains (magenta), and for a CDE distribution (green). The MAC calculated with the THEMIS dust model is shown for a spherical grain of 100 nm in diameter for amorphous forsterite (purple) and amorphous enstatite (orange). 
Fig. A.3 Comparison of the MAC of sample E20 with the MAC calculated for astronomical dust models. The MAC calculated with the astrosil is shown for a 0.1 μm size grain (black), for a lognormal grain size distribution with a mean diameter of 1 μm for spherical grains (magenta), and for a CDE distribution (green). The MAC calculated with the THEMIS dust model is shown for a spherical grain of 100 nm in diameter for amorphous forsterite (purple) and amorphous enstatite (orange). 
Fig. A.4 Comparison of the MAC of sample E20R with the MAC calculated for astronomical dust models. The MAC calculated with the astrosil is shown for a 0.1 μm size grain (black), for a lognormal grain size distribution with a mean diameter of 1 μm for spherical grains (magenta), and for a CDE distribution (green). The MAC calculated with the THEMIS dust model is shown for a spherical grain of 100 nm in diameter for amorphous forsterite (purple) and amorphous enstatite (orange). 
Fig. A.5 Comparison of the MAC of sample E30 with the MAC calculated for astronomical dust models. The MAC calculated with the astrosil is shown for a 0.1 μm size grain (black), for a lognormal grain size distribution with a mean diameter of 1 μm for spherical grains (magenta), and for a CDE distribution (green). The MAC calculated with the THEMIS dust model is shown for a spherical grain of 100 nm in diameter for amorphous forsterite (purple) and amorphous enstatite (orange). 
Fig. A.6 Comparison of the MAC of sample E30R with the MAC calculated for astronomical dust models. The MAC calculated with the astrosil is shown for a 0.1 μm size grain (black), for a lognormal grain size distribution with a mean diameter of 1 μm for spherical grains (magenta), and for a CDE distribution (green). The MAC calculated with the THEMIS dust model is shown for a spherical grain of 100 nm in diameter for amorphous forsterite (purple) and amorphous enstatite (orange). 
Fig. A.7 Comparison of the MAC of sample E40 with the MAC calculated for astronomical dust models. The MAC calculated with the astrosil is shown for a 0.1 μm size grain (black), for a lognormal grain size distribution with a mean diameter of 1 μm for spherical grains (magenta), and for a CDE distribution (green). The MAC calculated with the THEMIS dust model is shown for a spherical grain of 100 nm in diameter for amorphous forsterite (purple) and amorphous enstatite (orange). 
Fig. A.8 Comparison of the MAC of sample E40R with the MAC calculated for astronomical dust models. The MAC calculated with the astrosil is shown for a 0.1 μm size grain (black), for a lognormal grain size distribution with a mean diameter of 1 μm for spherical grains (magenta), and for a CDE distribution (green). The MAC calculated with the THEMIS dust model is shown for a spherical grain of 100 nm in diameter for amorphous forsterite (purple) and amorphous enstatite (orange). 
References
 Bohren, C. F., & Huffman, D. R. 1998, Absorption and Scattering of Light by Small Particles, eds. Bohren, C. F., & Huffman, D. R. (Hoboken: Wiley) [CrossRef] [Google Scholar]
 Demyk, K., Meny, C., Lu, X.H., et al. 2017, A&A, 600, A123 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
 Demyk, K., Gromov, V., Meny, C., et al. 2022, A&A, in press https://doi.org/10.1051/00046361/202243815 [Google Scholar]
 Jones, A. P., Fanciullo, L., Köhler, M., et al. 2013, A&A, 558, A62 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
 Li, A., & Draine, B. T. 2001, ApJ, 554, 778 [Google Scholar]
 Mennella, V., Brucato, J. R., Colangeli, L., et al. 1998, ApJ, 496, 1058 [NASA ADS] [CrossRef] [Google Scholar]
© K. Demyk et al. 2022
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the SubscribetoOpen model. Subscribe to A&A to support open access publication.
All Tables
Value of the MAC of the E10, E20, E30, E40, E10R, E20R, E30R, and E40R samples in the polyethylene matrix compared with that of the silicate component of cosmic dust models in polyethylene.
All Figures
Fig. 1 Comparison of the average MAC at 10 and 300 K with astronomical dust models. The MAC of the “astrosilicates” from Li & Draine (2001) were calculated using Mie theory for a 0.1 μm size grain (black), for a lognormal grainsize distribution with a mean diameter of 1 μm for spherical grains (magenta), and for a continuous distribution of ellipsoids (CDE, green). We note that to be comparable with the experimental data, the MAC are modelled in PE and not in vacuum. 

In the text 
Fig. A.1 Comparison of the MAC of sample Е10 with the MAC calculated for astronomical dust models. The MAC calculated with the astrosil is shown for a 0.1 μm size grain (black), for a lognormal grain size distribution with a mean diameter of 1 μm for spherical grains (magenta), and for a CDE distribution (green). The MAC calculated with the THEMIS dust model is shown for a spherical grain of 100 nm in diameter for amorphous forsterite (purple) and amorphous enstatite (orange). 

In the text 
Fig. A.2 Comparison of the MAC of sample E10R with the MAC calculated for astronomical dust models. The MAC calculated with the astrosil is shown for a 0.1 μm size grain (black), for a lognormal grain size distribution with a mean diameter of 1 μm for spherical grains (magenta), and for a CDE distribution (green). The MAC calculated with the THEMIS dust model is shown for a spherical grain of 100 nm in diameter for amorphous forsterite (purple) and amorphous enstatite (orange). 

In the text 
Fig. A.3 Comparison of the MAC of sample E20 with the MAC calculated for astronomical dust models. The MAC calculated with the astrosil is shown for a 0.1 μm size grain (black), for a lognormal grain size distribution with a mean diameter of 1 μm for spherical grains (magenta), and for a CDE distribution (green). The MAC calculated with the THEMIS dust model is shown for a spherical grain of 100 nm in diameter for amorphous forsterite (purple) and amorphous enstatite (orange). 

In the text 
Fig. A.4 Comparison of the MAC of sample E20R with the MAC calculated for astronomical dust models. The MAC calculated with the astrosil is shown for a 0.1 μm size grain (black), for a lognormal grain size distribution with a mean diameter of 1 μm for spherical grains (magenta), and for a CDE distribution (green). The MAC calculated with the THEMIS dust model is shown for a spherical grain of 100 nm in diameter for amorphous forsterite (purple) and amorphous enstatite (orange). 

In the text 
Fig. A.5 Comparison of the MAC of sample E30 with the MAC calculated for astronomical dust models. The MAC calculated with the astrosil is shown for a 0.1 μm size grain (black), for a lognormal grain size distribution with a mean diameter of 1 μm for spherical grains (magenta), and for a CDE distribution (green). The MAC calculated with the THEMIS dust model is shown for a spherical grain of 100 nm in diameter for amorphous forsterite (purple) and amorphous enstatite (orange). 

In the text 
Fig. A.6 Comparison of the MAC of sample E30R with the MAC calculated for astronomical dust models. The MAC calculated with the astrosil is shown for a 0.1 μm size grain (black), for a lognormal grain size distribution with a mean diameter of 1 μm for spherical grains (magenta), and for a CDE distribution (green). The MAC calculated with the THEMIS dust model is shown for a spherical grain of 100 nm in diameter for amorphous forsterite (purple) and amorphous enstatite (orange). 

In the text 
Fig. A.7 Comparison of the MAC of sample E40 with the MAC calculated for astronomical dust models. The MAC calculated with the astrosil is shown for a 0.1 μm size grain (black), for a lognormal grain size distribution with a mean diameter of 1 μm for spherical grains (magenta), and for a CDE distribution (green). The MAC calculated with the THEMIS dust model is shown for a spherical grain of 100 nm in diameter for amorphous forsterite (purple) and amorphous enstatite (orange). 

In the text 
Fig. A.8 Comparison of the MAC of sample E40R with the MAC calculated for astronomical dust models. The MAC calculated with the astrosil is shown for a 0.1 μm size grain (black), for a lognormal grain size distribution with a mean diameter of 1 μm for spherical grains (magenta), and for a CDE distribution (green). The MAC calculated with the THEMIS dust model is shown for a spherical grain of 100 nm in diameter for amorphous forsterite (purple) and amorphous enstatite (orange). 

In the text 
Current usage metrics show cumulative count of Article Views (fulltext article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 4896 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.