Free Access

Table B.1

Model parameters, priors, and posteriors for the Combined model.

Parameter Prior Posterior
Stellar temperature, Teff [K] Nu(a = 4000, b = 6000, µ = 5200, σ = 68) 5200.0 ± 66.0
Stellar radius, Rs [R] Nu(a = 0, µ = 0.77, σ = 0.006) 0.7699 ± 0.0059
log stellar surface gravity, log g [cgs] N(µ = 4.45, σ = 0.12)
Transit time, tb,0 [BJD-2457000] N(µ = 1743.73, σ = 0.025) 1743.7193 ± 0.0022
Transit time, tb,1 [BJD-2457000] N(µ = 1754.08, σ = 0.025) 1754.0776 ± 0.0012
Transit time, tb,2 [BJD-2457000] N(µ = 1930.12, σ = 0.025) 1930.1221 ± 0.002
Transit time, tb,3 [BJD-2457000] N(µ = 1940.47, σ = 0.025) 1940.4798 ± 0.0011
Transit time, tb,4 [BJD-2457000] N(µ = 1950.83, σ = 0.025) 1950.8343 ± 0.0013
Transit time, tb,5 [BJD-2457000] N(µ = 2333.96, σ = 0.025) 2333.9547 ± 0.0024
Transit time, tc,0 [BJD-2457000] N(µ = 1748.69, σ = 0.025) 1748.69408 ± 0.00079
Transit time, tc,1 [BJD-2457000] N(µ = 1937.83, σ = 0.025) 1937.82201 ± 0.0008
Transit time, tc,2 [BJD-2457000] N(µ = 2274.08, σ = 0.025) 2274.08398 ± 0.00079
Transit time, td,0 [BJD-2457000] N(µ = 1762.67, σ = 0.025) 1762.6679 ± 0.0016
Transit time, td,1 [BJD-2457000] N(µ = 1938.29, σ = 0.025) 1938.2915 ± 0.0014
Transit time, td,2 [BJD-2457000] N(µ = 2359.79, σ = 0.025) 2359.789 ± 0.022
Transit time, td,3 [BJD-2457000] N(µ = 2394.91, σ = 0.025) 2394.9236 ± 0.0015
Log radius ratio, log Rp,b/Rs N(µ = −3.48794, σ = 1) −3.507 ± 0.012
Log radius ratio, log Rp,c/Rs N(µ = −3.18726, σ = 1)
Log radius ratio, log Rp,d/Rs N(µ = −3.14438, σ = 1) −3.258 ± 0.018
Impact parameter, b0 U(a = 0.0, b = 1 + Rp,b/Rs) 0.149 ± 0.089
Impact parameter, b1 U(a = 0.0, b = 1 + Rp,c/Rs)
Impact parameter, b2 U(a = 0.0, b = 1 + Rp,d/Rs) 0.8225 ± 0.0087
Quadratic LD, ucheops,0 Nu(a = 0.5015, b = 0.5707,µ = 0.5367, σ = 0.0500) 0.567 ± 0.038
Quadratic LD, ucheops,1 Nu(a = 0.1457, b = 0.1949,µ = 0.1705, σ = 0.0500) 0.187 ± 0.047
Quadratic LD, ug,0 Nu(a = 0.6800, b = 0.7732,µ = 0.7257, σ = 0.0500) 0.701 ± 0.048
Quadratic LD, ug,1 Nu(a = 0.0513, b = 0.1269,µ = 0.0911, σ = 0.0500)
Quadratic LD, ui,0 Nu(a = 0.3776, b = 0.4283,µ = 0.4043, σ = 0.0500) 0.389 ± 0.049
Quadratic LD,ui,0 Nu(a = 0.2043, b = 0.2355,µ = 0.2186, σ = 0.0500) 0.206±0.05
Quadratic LD, ur,0 Nu(a = 0.4771, b = 0.5458,µ = 0.5114, σ = 0.0500) 0.477 ± 0.046
Quadratic LD, ur,1 Nu(a = 0.1800, b = 0.2255,µ = 0.2025, σ = 0.0500) 0.182± 0.048
Quadratic LD, utess,0 Nu(a = 0.3703, b = 0.4255,µ = 0.3981, σ = 0.0500) 0.375 ± 0.04
Quadratic LD, utess,1 Nu(a = 0.2046, b = 0.2383,µ = 0.2219, σ = 0.0500) 0.208 ± 0.046
Quadratic LD,uz,0 Nu(a = 0.2028, b = 0.3076,µ = 0.2333, σ = 0.0500) 0.212± 0.048
Quadratic LD, uz,1 Nu(a = 0.2428, b = 0.3645,µ = 0.3251, σ = 0.0500) 0.31 ± 0.05
Log photometric scatter, log /(ppt) N(µ = 3.535, σ = 3) −3.3 ± 1.0
Log photometric scatter, log /(ppt) N(µ = 2.947, σ = 3) −3.6 ± 1.1
Log photometric scatter, log /(ppt) N(µ = 2.557, σ = 3) −3.6 ± 1.1
Log photometric scatter, log /(ppt) N(µ = 2, σ = 3) −3.6 ± 1.2
Log photometric scatter, log /(ppt) N(µ = 2.101, σ = 3)
Log photometric scatter, log /(ppt) N(µ = 0.9765, σ = 3)
Log photometric scatter, log /(ppt) N(µ = −0.7551, σ = 3) −1.816 ± 0.09
Log photometric scatter, log /(ppt) N(µ = −0.5174, σ = 3) −1.85 ± 0.1
Log photometric scatter, log /(ppt) N(µ = −0.3489, σ = 3) −1.221 ± 0.049
Log photometric scatter, log /(ppt) N(µ = 0.5838, σ = 3) −0.991 ± 0.048
Log photometric scatter, log σtess,s/(ppt) N(µ = −0.314, σ = 3) −1.338 ± 0.037
g-lco airmass trend, df /d(airmass)N U(a = −35, b = 10) −22.87 ± 0.91
g-lco aperture entropy trend, df /d(entropy)N Nu(a = −20, b = 20,µ = 0,σ = 1) 0.11 ± 0.24
g-lco time trend, df /d(time)N Nu(a = −20, b = 20,µ = 0,σ = 1) −0.9 ± 0.26
g-lco aperture width trend, df /d(width)N Nu(a = −20, b = 20,µ = 0,σ = 1) −0.65 ± 0.18
g-lco g/r colour trend, df /d(g/r)N Nu(a = −20, b = 20,µ = 0,σ = 1) 7.55 ± 0.67
g-lco r/i colour trend, df /d(r/i)N Nu(a = −20, b = 20,µ = 0,σ = 1) 3.41 ± 0.19
g-lco airmass quadratic, U(a = −35, b = 10) 0.68 ± 0.11
r-lco airmass trend, df /d(airmass)N U(a = −35, b = 10) −15.94 ± 0.73
r-lco time trend, df /d(time)N Nu(a = −20, b = 20,µ = 0,σ = 1) −1.31 ± 0.18
r-lco aperture width trend, df /d(width)N Nu(a = −20, b = 20,µ = 0,σ = 1) −0.438 ± 0.059
r-lco g/r colour trend, df /d(g/r)N Nu(a = −20, b = 20,µ = 0,σ = 1) −1.35 ± 0.59
r-lco r/i colour trend, df /d(r/i)N Nu(a = −20, b = 20,µ = 0,σ = 1) 2.76 ± 0.16
r-lco airmass quadratic, U(a = −35, b = 10) 0.163 ± 0.082

N details a normally distributed prior with mean, µ and standard deviation, σ values. U details a uniform distribution with lower, a, and upper, b, limits. Nu details a truncated normal distribution with µ,σ, a & b values.‡ represents the uniform prior as presented by Espinoza (2018) and implemented by exoplanet. CHEOPS suffixes refer chronologically to the four unique CHEOPS visits, SaEx refers to detrending parameters for the photometry from SAINT-EX, McD refers to those for photometry from the 1m LCO telescope at McDonald, and lco refers to data from the 2m LCO telescope with the MuSCAT-3 instrument in each of the four bands (g-, r-, i-, & z-).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.