Table A.2.
Kinematic parameters of the program stars for Galactic mass model I of Irrgang et al. (2013).
# | x | y | z | r | vx | vy | vz | vGrf | vGrf − vesc | Pb | xp | yp | zp | rp | vx,p | vy,p | vz,p | vGrf, p | vej | τflight | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(kpc) | (km s−1) | (%) | (kpc) | (km s−1) | (Myr) | |||||||||||||||||
1 | −4.12 | −1.78 | −7.25 | 8.52 | −720 | −353 | −1482 | 1680 | 1080 | 0 | −0.6 | −0.06 | 0.0 | 0.19 | −790 | −364 | −1540 | 1760 | 1810 | 4.72 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
2 | −21.6 | 27.2 | −25.9 | 43 | −203 | 200 | −173 | 334 | −124 | 100 | 2.3 | −1.2 | 0.0 | 3.4 | −180 | 370 | −472 | 600 | 750 | 105 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
3 | −6.05 | 5.1 | 17.7 | 19.3 | −108 | 65 | 305 | 329 | −204 | 100 | −0.1 | 0.7 | 0.0 | 0.8 | −170 | 210 | 574 | 640 | 710 | 44.0 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
4 | 1.8 | −0.51 | 20.6 | 20.7 | 38 | 0 | 303 | 305 | −222 | 100 | −0.2 | −0.1 | 0.0 | 1.0 | 10 | −20 | 610 | 610 | 640 | 50 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
5 | −32.4 | 16.1 | 23.2 | 43 | −391 | 335 | 399 | 652 | 192 | 0 | −8.9 | −3.0 | 0.0 | 9.5 | −502 | 346 | 453 | 760 | 627 | 54 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
6 | −20.0 | −22.9 | 44 | 53 | −120 | 10 | 550 | 563 | 126 | 0 | −11 | −22 | 0 | 25 | −170 | −50 | 598 | 626 | 623 | 75 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
7 | −6.10 | 29.2 | −37 | 48 | −210 | 0 | −380 | 430 | −20 | 60 | 11 | 26 | 0 | 29 | −190 | 90 | −428 | 476 | 612 | 86 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
8 | −18.1 | −8.4 | 9.1 | 21.9 | −523 | −124 | 148 | 557 | 34 | 2 | 6.0 | −1.0 | 0.0 | 5.8 | −517 | −262 | 327 | 660 | 589 | 42 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
9 | −15.9 | −22.1 | 32.6 | 42.5 | 40 | −300 | 184 | 349 | −110 | 100 | −14 | 17 | 0 | 22 | −90 | −278 | 310 | 429 | 586 | 127 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
10 | −0.6 | 13.6 | 16 | 21 | 124 | 260 | 430 | 514 | −14 | 66 | −4.5 | 2.7 | 0.0 | 5.30 | 64 | 385 | 528 | 642 | 575 | 34 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
11 | 4.4 | 4.31 | 10.5 | 12.1 | 97 | 272 | 152 | 326 | −247 | 100 | −0.78 | −6.1 | 0.0 | 6.2 | 148 | 163 | 380 | 440 | 561 | 39.1 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
12 | −11.09 | −24.8 | 39.9 | 48 | −40 | −25 | 446 | 449 | 1 | 42 | −7 | −20 | 0 | 22 | −80 | −110 | 506 | 529 | 561 | 83 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
13 | −20.2 | 63 | −20.8 | 70 | −31 | 532 | −205 | 572 | 162 | 0 | −15.4 | 9 | 0.0 | 16 | −92 | 634 | −224 | 673 | 541 | 93 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
14 | −14.6 | 6.0 | −6.6 | 17.2 | −10 | 295 | −470 | 551 | 10 | 40 | −14.1 | 1.8 | 0.0 | 14.2 | −50 | 307 | −490 | 570 | 500 | 13.7 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
15 | −4.92 | 4.0 | 10.8 | 12.5 | 262 | 149 | 356 | 466 | −105 | 100 | −10.8 | −0.5 | 0.0 | 10.8 | 161 | 169 | 432 | 491 | 470 | 26.3 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
16 | 1.4 | 0.43 | 20.8 | 20.9 | 327 | 80 | 158 | 371 | −155 | 100 | −22 | −5.2 | 0 | 22 | 200 | 46 | 297 | 370 | 436 | 82 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
17 | −0.9 | 25.3 | 23.1 | 34.3 | 165 | 275 | 321 | 455 | −27 | 97 | −10.3 | 4.4 | 0.0 | 11.2 | 91 | 390 | 403 | 563 | 436 | 62 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
18 | −29.5 | −13.0 | 26.1 | 41.5 | −380 | 18 | 261 | 460 | −5 | 55 | 5 | −10.7 | 0.0 | 11.6 | −430 | −120 | 367 | 575 | 427 | 82 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
19 | −26.1 | −5.7 | 26.2 | 37.4 | −328 | 145 | 273 | 451 | −22 | 93 | 3.7 | −14.8 | 0.0 | 15.1 | −390 | 23 | 374 | 540 | 417 | 80 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
20 | −7.92 | 0.439 | −1.51 | 8.08 | −370 | 389 | −183 | 567 | −50 | 100 | −4.8 | −2.55 | 0.0 | 5.44 | −435 | 375 | −203 | 609 | 414 | 7.6 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
21 | −5.82 | 2.26 | −5.5 | 8.32 | −71 | 98 | −165 | 204 | −404 | 100 | −2.4 | −0.42 | 0.0 | 2.5 | −266 | 119.9 | −318 | 431 | 402 | 23.1 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
22 | −9.11 | 0.499 | 3.23 | 9.68 | −336 | 395 | 183 | 549 | −49 | 100 | −3.1 | −5.5 | 0.0 | 6.28 | −435 | 343 | 229.6 | 599 | 388 | 15.3 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
23 | −19.2 | −8.3 | −10.0 | 23.1 | −141.7 | −4 | 30 | 145 | −374 | 100 | 6.0 | 0.3 | 0.0 | 6.0 | −157 | −189 | −331 | 414 | 381 | 109 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
24 | −5.55 | 1.76 | −5.8 | 8.20 | 41.6 | 51 | −207 | 218 | −392 | 100 | −5.08 | 0.3 | 0.0 | 5.07 | −111 | 76 | −311 | 339 | 374 | 21.7 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
25 | −26.7 | 4.9 | −11.5 | 29.5 | −336 | 213 | −153 | 426 | −70 | 100 | −2.1 | −7.5 | 0.0 | 7.9 | −502 | 130 | −235 | 568 | 362 | 60 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
26 | −31.0 | 8.0 | 16.3 | 35.9 | −207 | 140 | 147 | 290 | −187 | 100 | −6.1 | −4.9 | 0.0 | 8.1 | −416 | 115 | 238 | 488 | 360 | 86 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
27 | −6.42 | −16.9 | −9.7 | 20.6 | −381 | −161 | −242 | 479 | −50 | 98 | 7.5 | −9.2 | 0.0 | 11.8 | −361 | −274 | −287.7 | 537 | 355 | 35.5 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
28 | 1.0 | −2.62 | −6.1 | 6.7 | −286 | 270.2 | −75 | 400 | −224 | 100 | 10.3 | −10.6 | 0.0 | 14.8 | −179 | 139 | −188.7 | 295 | 355 | 38.6 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
29 | −6.66 | −0.85 | 2.86 | 7.30 | −98 | 463 | 166 | 502 | −122 | 100 | −4.52 | −7.4 | 0.0 | 8.69 | −181 | 404 | 209 | 489 | 349 | 14.6 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
30 | −8.69 | −1.46 | 2.72 | 9.22 | −60.1 | 288 | 315 | 431 | −173 | 100 | −7.98 | −3.82 | 0.0 | 8.85 | −109 | 272 | 330 | 442 | 335 | 8.2 | ||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Notes. The identification numbers in the first column correspond to those in Table 1. Results and statistical uncertainties are derived with a Monte Carlo simulation and are either given as the mode and highest density interval of 1σ confidence if the resulting parameter distribution is unimodal or as the median value plus 15.87th and 84.13th percentiles if it is not. In addition to Cartesian positions and velocities, the Galactic rest-frame velocity , the local Galactic escape velocity vesc, the galactocentric radius r = (x2 + y2 + z2)1/2, the ejection velocity vej (defined as the Galactic rest-frame velocity relative to the rotating Galactic disk), and the flight time τflight are listed. Plane-crossing quantities are labeled with the subscript “p”. The probability Pb is the fraction of Monte Carlo runs for which the star is bound to the Milky Way.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.