Table 3

Statistical comparison of the performances of three regression methods on the test set (the Horsehead pillar).

Method Hyper-parameters Max. error(a) Mean error(a) RMSE MSE
dex dex dex dex
Linear regression 0 0.37 0.026 ± 0.003 0.14 0.0182 ± 0.0007
Linear regression on asinh(I) 1 0.33 0.075 ± 0.002 0.11 0.0070 ± 0.0003
Random forest 3 0.26 0.040 ± 0.002 0.09 0.0060 ± 0.0002

Method Hyper-parameters Max. error(a) Mean error(a) RMSE MSE
10dex 10dex 10dex 10dex

Linear regression 0 2.34 1.062 1.38 1.043
Linear regression on asinh(I) 1 2.14 1.190 1.29 1.016
Random forest 3 1.82 1.096 1.23 1.014

Notes. (a) The maximum and mean errors are absolute errors on .

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.