Table A.1.
Spectroscopic parameters of CH3SD (cm−1).
ntra | Operatorb | Par.c,d | CH3SDe |
---|---|---|---|
22, 0 | F | 10.3520639(31) | |
22, 0 | (1 − cos 3α) | (1/2)V3 | 217.71250(12) |
21, 1 | pαPa | ρ | 0.493517098(11) |
20, 2 | A | 2.59513758(20) | |
20, 2 | B | 0.42517153(13) | |
20, 2 | C | 0.39176839(13) | |
20, 2 | (1/2){Pa, Pb} | 2Dab | 0.0107310(24) |
44, 0 | (1 − cos 6α) | (1/2)V6 | −0.43459(10) |
44, 0 | Fm | −0.38535(20)×10−3 | |
43, 1 | Pa | ρm | −0.93969(42)×10−3 |
42, 2 | P2(1− cos 3α) | V3J | −0.19405784(64)×10−2 |
42, 2 | (1 − cos3α) | V3K | 0.685147(15)×10−2 |
42, 2 | ( − )(1 − cos 3α) | V3bc | −0.15679(13)×10−3 |
42, 2 | (1/2){Pa, Pb}(1 − cos3α) | V3ab | 0.887790(81)×10−2 |
42, 2 | P2 | FJ | −0.2823067(53)×10−4 |
42, 2 | FK | −0.123322(32)×10−2 | |
42, 2 | (1/2){Pa, Pb} | Fab | 0.1561(14)×10−3 |
42, 2 | ( − ) | Fbc | 0.205539(85)×10−4 |
42, 2 | (1/2){Pa, Pc}sin3α | D3ac | 0.22672(89)×10−1 |
42, 2 | (1/2){Pb, Pc}sin3α | D3bc | 0.280992(53)×10−2 |
41, 3 | pαPaP2 | ρJ | −0.369536(28)×10−4 |
41, 3 | pα | ρK | −0.75792(11)×10−3 |
41, 3 | (1/2)pα{, Pb} | ρab | 0.2034(20)×10−3 |
40, 4 | P4 | −ΔJ | 0.4876778(87)×10−6 |
40, 4 | P2 | −ΔJK | 0.143777(64)×10−4 |
40, 4 | −ΔK | 0.178662(17)×10−3 | |
40, 4 | P2( − ) | −2δJ | 0.769272(19)×10−7 |
40, 4 | (1/2){, ( − )} | −2δK | 0.181622(70)×10−4 |
40, 4 | (1/2){, Pb} | 2DabK | 0.5500(67)×10−4 |
66, 0 | (1 − cos 9α) | (1/2)V9 | 0.035067(59) |
66, 0 | Fmm | −0.4497(47)×10−6 | |
65, 1 | Pa | ρmm | −0.1252(14)×10−5 |
64, 2 | P2(1 − cos 6α) | V6J | −0.18540(14)×10−4 |
64, 2 | (1 − cos 6α) | V6K | −0.9114(41)×10−4 |
64, 2 | (1/2){Pa, Pb}(1 − cos 6α) | V6ab | −0.652(16)×10−4 |
64, 2 | ( − )(1 − cos 6α) | V6bc | −0.2604(22)×10−4 |
64, 2 | (1/2){Pb, Pc}sin6α | D6bc | 0.451(13)×10−4 |
64, 2 | (1/2){Pb, Pc, , sin3α} | D3bcm | 0.982(22)×10−5 |
64, 2 | FmK | −0.1329(18)×10−5 | |
63, 3 | PaP2 | ρmJ | 0.2009(39)×10−8 |
63, 3 | ρmK | −0.624(12)×10−6 | |
63, 3 | (1/2){Pa, Pb, Pc, pα, sin3α} | ρbc3 | 0.1166(18)×10−4 |
62, 4 | (1/2)P2{Pa, Pb}(1 − cos 3α) | V3abJ | −0.19238(38)×10−6 |
62, 4 | P2( − )(1 − cos 3α) | V3bcJ | 0.14478(59)×10−8 |
62, 4 | P4(1 − cos 3α) | V3JJ | 0.4886(13)×10−8 |
62, 4 | P2(1 − cos 3α) | V3JK | −0.5961(43)×10−6 |
62, 4 | (1 − cos 3α) | V3KK | 0.8023(43)×10−6 |
62, 4 | (1/2){, }cos3α | V3b2c2 | 0.3155(19)×10−7 |
62, 4 | (1/2)P2{Pa, Pb} | FabJ | 0.891(72)×10−10 |
62, 4 | P2( − ) | FbcJ | −0.2107(14)×10−9 |
62, 4 | (1/2){, ( − )} | FbcK | −0.270(11)×10−9 |
62, 4 | P4 | FJJ | 0.13603(79)×10−9 |
62, 4 | P2 | FJK | 0.6308(79)×10−8 |
62, 4 | FKK | −0.611(46)×10−7 | |
62, 4 | (1/2){, } | Fb2c2 | −0.4400(40)×10−9 |
62, 4 | (1/2)P2{Pa, Pc}sin3α | D3acJ | −0.367(11)×10−7 |
62, 4 | (1/2)P2{Pb, Pc}sin3α | D3bcJ | −0.4477(11)×10−7 |
62, 4 | (1/2){, Pb, Pc}sin3α | D3bcK | 0.3161(34)×10−5 |
61, 5 | pαPaP4 | ρJJ | 0.9663(67)×10−10 |
61, 5 | pαP2 | ρJK | 0.5270(54)×10−8 |
61, 5 | pα | ρKK | 0.5142(99)×10−7 |
60, 6 | P6 | ΦJ | −0.2202(13)×10−12 |
60, 6 | P4 | ΦJK | 0.6867(22)×10−10 |
60, 6 | P2 | ΦKJ | 0.1254(12)×10−8 |
60, 6 | ΦK | 0.1440(11)×10−7 | |
60, 6 | P4( − ) | 2ϕJ | 0.1469(64)×10−13 |
60, 6 | (1/2)P2{, ( − )} | 2ϕJK | 0.16756(88)×10−9 |
86, 2 | P2(1 − cos 9α) | V9J | −0.2433(13)×10−5 |
86, 2 | (1 − cos 9α) | V9K | −0.1136(48)×10−4 |
86, 2 | (1/2){Pb, Pc, , sin3α} | D3bcmm | −0.828(29)×10−8 |
84, 4 | P4(1 − cos 6α) | V6JJ | 0.373(20)×10−9 |
84, 4 | P2(1 − cos 6α) | V6JK | −0.1430(11)×10−7 |
84, 4 | (1/2){, }cos6α | V6b2c2 | 0.343(13)×10−8 |
84, 4 | (1/2){Pa, Pb, }cos6α | V6abc2 | −0.1371(34)×10−6 |
84, 4 | P2( − )(1 − cos 6α) | V6bcJ | 0.9451(71)×10−9 |
106, 4 | P4(1 − cos 9α) | V9JJ | 0.954(13)×10−9 |
106, 4 | (1/2){, }cos9α | V9b2c2 | 0.2778(94)×10−8 |
103, 7 | (1/2){Pa, , , pα, sin3α} | ρ3b3c3 | −0.596(28)×10−13 |
Notes.
n=t+r, where n is the total order of the operator, t is the order of the torsional part and r is the order of the rotational part, respectively. The ordering scheme of Nakagawa et al. (1987) is used.
{A,B,C,D} = ABCD + DCBA. {A,B,C} = ABC + CBA. {A,B} = AB + BA. The product of the operator in the first column of a given row and the parameter in the third column of that row gives the term actually used in the torsion-rotation Hamiltonian of the program, except for F, ρ and ARAM, which occur in the Hamiltonian in the form F(pa + ρPa)2 + ARAM.
Parameter nomenclature is based on the subscript procedure of Xu et al. (2008).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.