Fig. 1

Left panel: building block of a fully-connected neural network. Each input of the previous layer is connected to each neuron of the output. Each connection is represent by different lines where the width is associated to higher weights and the dashed lines to negative weights. Right panel: three-dimensional convolution carried out by a convolutional layer. The 3D-kernel traverses the whole input, producing a single scalar at each position. At the end, a 2D feature map will be created for each 3D kernel. When all feature maps are stacked, a feature map tensor will be created.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.