Table 4
Rotational temperatures (Trot), column densities (N), and abundances with respect to hydrogen nuclei inferred in the Orion Bar PDR.
Uniform beam filling | Semi-extended source | ||||||
|
|||||||
|
|||||||
T rot | N(X) | T rot | N(X) | Abundance* | Notes | ||
[ K ] | [ cm-2 ] | [ K ] | [ cm-2 ] | ||||
|
|||||||
HCO | 15 ± 2 | (1.1 ± 0.3) × 1013 | 9 ± 2 | (5.3 ± 3.5) × 1013 | (1.7−8.4) × 10-10 | a | |
|
|||||||
o-H2CO Ka = 1 | 17 ± 2 | (3.7 ± 0.6) × 1013 | 12 ± 1 | (1.1 ± 0.3) × 1014 | a | ||
o-H2CO Ka = 3 | 17 | (6.9 ± 1.0) × 1012 | 12 | (1.1 ± 0.2) × 1013 | b, c | ||
p-H2CO Ka = 0 | 16 ± 2 | (9.8 ± 1.4) × 1012 | 9 ± 1 | (3.9 ± 0.6) × 1013 | a, c | ||
p-H2CO Ka = 2 | 18 ± 1 | (6.2 ± 0.2) × 1012 | 13 ± 1 | (1.3 ± 0.1) × 1013 | a, c | ||
[(o+p)-H 2 CO] | – | (6.0 ± 0.6) × 1013 | – | (1.7 ± 0.3) × 1014 | (0.9−2.7) × 10-9 | d | |
|
|||||||
o-H![]() |
15 ± 3 | (7.3 ± 2.4) × 1011 | 10 ± 2 | (3.0 ± 1.1) × 1012 | a | ||
p-H![]() |
9 ± 1 | (2.3 ± 0.4) × 1011 | 7 ± 1 | (8.0 ± 1.2) × 1011 | a, c | ||
[(o+p)-H
![]() |
– | (9.6 ± 2.4) × 1011 | – | (3.8 ± 1.1) × 1012 | (1.5−6.0) × 10-11 | d | |
|
|||||||
o-H2CS Ka = 1 | 30 ± 3 | (3.1 ± 0.5) × 1012 | 19 ± 1 | (1.3 ± 0.2) × 1013 | a | ||
o-H2CS Ka = 3 | 30 | (6.7 ± 1.9) × 1011 | 19 | (2.7 ± 0.4) × 1012 | e, c | ||
p-H2CS Ka = 0 | 29 ± 6 | (5.0 ± 1.4) × 1011 | 16 ± 2 | (2.6 ± 1.0) × 1012 | a | ||
p-H2CS Ka = 2 | 35 ± 8 | (7.8 ± 4.4) × 1011 | 15 ± 3 | (2.6 ± 1.9) × 1012 | a | ||
[(o+p)-H 2 CS] | – | (5.0 ± 0.7) × 1012 | – | (2.1 ± 0.3) × 1013 | (0.8−3.3) × 10-10 | d | |
|
|||||||
HNCO | 51 ± 7 | (1.0 ± 0.1) × 1012 | 26 ± 3 | (5.6 ± 1.3) × 1012 | (1.6−8.9) × 10-11 | a | |
|
|||||||
CH 2 NH | 28 ± 7 | (1.1 ± 0.4) × 1012 | 27 ± 7 | (2.4 ± 1.0) × 1012 | (1.7−3.8) × 10-11 | a | |
|
|||||||
o-H2CCO Ka = 1 | 55 ± 2 | (3.0 ± 0.1) × 1012 | 30 ± 2 | (1.3 ± 0.2) × 1013 | a | ||
o-H2CCO Ka = 3 | 64 ± 6 | (1.3 ± 0.3) × 1012 | 34 ± 1 | (4.2 ± 0.7) × 1012 | a | ||
p-H2CCO Ka = 0 | 57 ± 4 | (4.8 ± 0.6) × 1011 | 42 ± 3 | (1.3 ± 0.2) × 1012 | a | ||
p-H2CCO Ka = 2 | 54 ± 3 | (1.1 ± 0.1) × 1012 | 29 ± 2 | (6.1 ± 1.8) × 1012 | a | ||
[(o+p)-H 2 CCO] | – | (5.9 ± 0.3) × 1012 | – | (2.5 ± 0.3) × 1013 | (0.9−4.0) × 10-10 | d | |
|
|||||||
HC 3 N | 43 ± 2 | (4.2 ± 0.3) × 1011 | 27 ± 1 | (3.2 ± 0.3) × 1012 | (0.7−5.1) × 10-11 | a | |
|
|||||||
cis-HCOOH | 23 ± 4 | (4.6 ± 0.7) × 1011 | 21 ± 4 | (4.2 ± 0.6) × 1012 | f | ||
trans-HCOOH Ka = 0 | 12 ± 2 | (3.5 ± 0.5) × 1011 | 6 ± 1 | (4.1 ± 0.6) × 1012 | f | ||
trans-HCOOH Ka = 1 | 12 ± 3 | (3.3 ± 1.3) × 1011 | 6 ± 1 | (3.6 ± 2.1) × 1012 | f | ||
trans-HCOOH Ka = 2 | 13 ± 3 | (6.3 ± 2.8) × 1011 | 7 ± 1 | (5.0 ± 2.4) × 1012 | f | ||
[(cis+trans)-HCOOH] | – | (1.8 ± 0.3) × 1012 | – | (1.7 ± 0.3) × 1013 | (0.3−2.7) × 10-10 | g | |
|
|||||||
A-CH3CN Ka = 0 | 26 ± 2 | (2.8 ± 0.5) × 1011 | 19 ± 1 | (1.9 ± 0.6) × 1012 | a | ||
A-CH3CN Ka = 3 | 30 ± 1 | (3.0 ± 0.6) × 1011 | 21 ± 1 | (1.5 ± 0.6) × 1012 | a | ||
E-CH3CN Ka = 1 | 28 ± 2 | (2.9 ± 0.5) × 1011 | 20 ± 1 | (1.8 ± 0.4) × 1012 | a | ||
E-CH3CN Ka = 2 | 31 ± 1 | (1.7 ± 0.2) × 1011 | 22 ± 1 | (1.0 ± 0.3) × 1012 | a | ||
E-CH3CN Ka = 4 | 26 ± 1 | (1.1 ± 0.4) × 1011 | 18 ± 1 | (6.7 ± 3.2) × 1011 | a | ||
[(A+E)-CH 3 CN] | – | (1.2 ± 0.1) × 1012 | – | (6.9 ± 1.0) × 1012 | (0.2−1.1) × 10-10 | h | |
|
|||||||
A-CH3OH Ka = 0 | 34 ± 2 | (8.0 ± 0.6) × 1012 | 18 ± 2 | (5.3 ± 1.1) × 1013 | a | ||
A-CH3OH Ka = ±1 | 26 ± 2 | (3.5 ± 0.9) × 1012 | 14 ± 1 | (2.8 ± 0.7) × 1013 | a | ||
E-CH3OH | 36 ± 3 | (1.9 ± 0.2) × 1013 | 26 ± 3 | (6.5 ± 1.4) × 1013 | a | ||
[(A+E)-CH 3 OH] | – | (3.1 ± 0.2) × 1013 | – | (1.5 ± 0.2) × 1014 | (0.5−2.4) × 10-9 | h | |
|
|||||||
A-CH3CHO | 31 ± 2 | (2.3 ± 0.3) × 1012 | 20 ± 1 | (1.2 ± 0.2) × 1013 | a | ||
E-CH3CHO | 33 ± 3 | (2.6 ± 0.4) × 1012 | 21 ± 1 | (1.2 ± 0.2) × 1013 | a | ||
[(A+E)-CH 3 CHO] | – | (4.9 ± 0.5) × 1012 | – | (2.4 ± 0.3) × 1013 | (0.8−3.8) × 10-10 | h |
Notes.
The abundance of each species with respect to H nuclei is given by , with N(H2) ≃ 3 × 1022 cm-2 and N(H) ≃ 3 × 1021 cm-2 (van der Werf et al. 2013). (a) Trot and N from rotational diagram analysis. (b) Only two lines detected with the same Eu/k. N calculated assuming the same Trot that o-H2CO Ka = 1. (c) ΔN estimated assuming a 15% of the calculated N. (d) Total N calculated as the sum of the ortho and para species. (e) Only two lines detected with upper level energies of 138.3 K and 149.8 K. They are too similar for an accurate estimation of Trot and N from a rotational diagram analysis. N calculated assuming the same Trot that o-H2CS Ka = 1. (f) From Cuadrado et al. (2016). (g) Total N calculated as the sum of the cis and trans species. (h) Total N calculated as the sum of the A and E species.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.