Free Access

Table 1

Ethylene glycol transitions (aGg conformer) not blended or only partially blended in the ALMA dataset.

Frequencya Quantum numbersb S μ 2 c log (Aul)d E u d g u d
(MHz) (D2) (K)

214 526.41410 19(11, 8) v = 1–19(10, 9) v = 1 50.7 4.67073 153.1 273
214 526.41470 19(11, 9) v = 1–19(10, 10) v = 1 65.2 4.67067 153.1 351
214 712.96650 21(5, 16) v = 0–20(5, 15) v = 1 732.5 3.66141 127.1 387
214 808.01940 23(2, 22) v = 0–22(2, 21) v = 1 685.7 3.61897 132.4 329
214 829.92520 23(1, 22) v = 0–22(1, 21) v = 1 875.5 3.62187 132.4 423
216 685.81470 21(3, 19) v = 1–20(3, 18) v = 0 663.4 3.69253 117.3 387
216 826.11240 20(5, 15) v = 1–19(5, 14) v = 0 557.3 3.74666 116.8 369
217 139.72350 21(4, 17) v = 0–20(4, 16) v = 1 786.8 3.61568 123.9 387
217 449.99470 24(1, 24) v = 1–23(1, 23) v = 1 928.6 3.59857 136.4 441
217 450.27020 24(0, 24) v = 0–23(0, 23) v = 1 722.2 3.59863 136.4 343
217 587.54780 21(2, 19) v = 1–20(2, 18) v = 0 666.2 3.57614 117.2 301
219 089.72000 22(10, 13) v = 0–21(10, 12) ) v = 1 670.7 3.69311 173.5 405
219 089.72790 22(10, 12) v = 0–21(10, 11) v = 1 521.6 3.69317 173.5 315
219 384.91030 26(11, 16) v = 1–26(10, 16) v = 0 15.8 5.28218 232.4 371
219 385.17780 22( 9, 14) v = 0–21(9, 13) v = 1 703.8 3.67045 164.3 405
219 385.32400 26(11, 15) v = 1–26(10, 17) v = 0 20.3 5.28213 232.4 477
219 385.42560 22( 9, 13) v = 0–21(9, 12) v = 1 547.3 3.67051 164.3 315
221 007.82310 21(4, 18) v = 1–20(4, 17) v = 0 818.3 3.57562 122.1 387
221 038.79970 22(6, 17) v = 0–21(6, 16) v = 1 771.6 3.62074 142.6 405
221 100.31520 22(5, 18) v = 0–21(5, 17) v = 1 762.5 3.62553 137.4 405
222 054.23240 21(10, 12) v = 1–20(10, 11) v = 0 624.5 3.68686 163.0 387
222 054.23580 21(10, 11) v = 1–20(10, 10) v = 0 485.8 3.68681 163.0 301
222 348.60040 23(1, 23) v = 1–22(1, 22) v = 0 889.5 3.57018 126.0 423
222 349.15090 23(0, 23) v = 1–22(0, 22) v = 0 692.0 3.57003 126.0 329
223 741.66380 21(6, 16) v = 1–20(6, 15) v = 0 738.2 3.60437 132.0 387
226 643.30070 25(1, 25) v = 0–24(1, 24) v = 1 752.5 3.54420 147.7 357
226 643.45630 25(0, 25) v = 0–24(0, 24) v = 1 967.6 3.54415 147.7 459
228 602.83320 23(16, 7) v = 0–22(16, 6) v = 1 456.4 3.82381 261.3 423
228 602.83320 23(16, 8) v = 0–22(16, 7) v = 1 354.9 3.82387 261.3 329
228 752.77650e 23(2, 22) v = 1–22(2, 21) v = 0 875.2 3.54020 132.7 423
229 233.71610 23(11, 13) v = 0–22(11, 12) v = 1 530.2 3.64599 195.1 329
229 233.71660 23(11, 12) v = 0–22(11, 11) v = 1 681.8 3.64594 195.1 423
231 127.40080 23(7, 16) v = 0–22(7, 15) v = 1 801.1 3.56515 160.2 423
231 524.03310 23(6, 18) v = 0–22( 6, 17) v = 1 618.1 3.56638 154.1 329
231 564.00490 24(1, 24) v = 1–23(1, 23) v = 0 722.1 3.51672 136.8 343
231 564.31950 24(0, 24) v = 1–23(0, 23) v = 0 928.6 3.51666 136.8 441
232 095.73820 22(12, 11) v = 1–21(12, 10) v = 0 462.3 3.67043 195.4 315
232 095.73830 22(12, 10) v = 1–21(12, 9) v = 0 594.5 3.67038 195.4 405
232 349.45090 22(20, 2) v = 1–21(20, 1) v = 0 146.9 4.27619 320.9 405
232 349.45090 22(20, 3) v = 1–21(20, 2) v = 0 114.2 4.27614 320.9 315
232 350.05940 22(10, 13) v = 1–21(10, 12) v = 0 522.1 3.61615 173.8 315
232 350.06810 22(10, 12) v = 1–21(10, 11) v = 0 671.4 3.61610 173.8 405
232 881.53340 23(6, 17) v = 0–22(6, 16) v = 1 750.3 3.58376 154.2 423
235 304.05030 22(6, 16) v = 1–21(6, 15) v = 0 773.7 3.53805 143.1 405
235 441.43720 10(7, 4) v = 0–9(6, 3) v = 0 56.6 4.34165 51.1 189
235 441.48820 10(7, 3) v = 0–9(6, 4) v = 0 44.1 4.34161 51.1 147
235 442.34320 10(7, 4) v = 1–9(6, 3) v = 1 42.1 4.36183 51.4 147
235 442.39560 10(7, 3) v = 1–9(6, 4) v = 1 54.1 4.36177 51.4 189
235 471.89630 8(8, 0) v = 0–7(7, 1) v = 0 49.0 4.20372 49.1 119
235 471.89630 8(8, 1) v = 0–7(7, 0) v = 0 63.0 4.20376 49.1 153
235 834.23970 26(1, 26) v = 0–25(1, 25) v = 1 1006.5 3.49194 159.3 477
235 834.32720 26(0, 26) v = 0–25(0, 25) v = 1 782.7 3.49199 159.3 371
239 605.33240 24(11, 14) v = 0–23(11, 13) v = 1 728.5 3.57758 206.9 441
239 605.33370 24(11, 13) v = 0–23(11, 12) v = 1 566.7 3.57753 206.9 343
241 545.26260 24(7, 18) v = 0–23(7, 17) v = 1 841.5 3.50446 172.1 441
242 947.99050 23(9, 15) v = 1–22(9, 14) v = 0 749.2 3.52928 175.9 423
242 948.59120 23(9, 14) v = 1–22(9, 13) v = 0 582.8 3.52923 175.9 329
243 259.73980 24(6, 18) v = 0–23(6, 17) v = 0 324.4 3.80007 166.2 343
244 685.14770 24(2, 22) v = 1–23(2, 21) v = 1 939.2 3.43992 150.1 441

Notes.

(a)

Transitions used for the rotational diagram (see Fig. 5) are indicated by a star.

(b)

The quantum numbers are J(Ka, Kc) as defined in the CDMS database where v is a state number (see Sect. 3.1).

(c)

S is the line strength and μ the dipole moment.

(d)

See Sect. 3.4 for the definition of the parameters.

(e)

Not blended transition.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.