Table 1
Simulations for the verification of TPCI.
Name | Numerical setup | BC | Grid | Irradiation | |||||||
(time stepping, interpolation, | Left | Right | Geometry | Grid points | SED shape | Ioniz. radiation field | |||||
Riemann solver) | ρ | v | p | ρ | v | p | (λ< 912 Å) | ||||
|
|||||||||||
D-front | RK3, WENO3, hllc | f | f | o | o | f | o | Cartesian | 200 uni. | 50 000 K BB | ΦH = 1011 cm-2 s-1 |
+advection | |||||||||||
c-shock | RK3, LINEAR, two_shock | o | o | o | o | o | o | Cartesian | 400 uni. | – | – |
R-front | RK3, LINEAR, hllc | o | o | o | o | o | o | Cartesian | 400 uni. | 50 000 K BB | QH = 1049 s-1 |
hJupiter | RK3, WENO3, hllc | f | o | f | o | o | o | Spherical | 240 stretch. | solar min. | 4πJ = 1315 erg cm-2 s-1 |
+gravity, +thermal cond. | |||||||||||
+advection |
Notes. Abbreviations: (BC) boundary condition, (f) fixed boundary condition, (o) outflow boundary condition, (SED) spectral energy distribution, (uni.) uniform grid spacing, (stretch.) stretched grid spacing, (BB) blackbody spectrum, (solar min.) solar minimum spectrum (Woods & Rottman 2002), ,
,
, (RK3) third-order Runge-Kutta scheme (Gottlieb & Shu 1996), (WENO3) weighted essentially non-oscillatory finite difference scheme (Jiang & Shu 1996), (hllc) Harten, Lax and van Leer approximate Riemann solver with contact discontinuity (Toro et al. 1994), (two_shock) nonlinear Riemann solver based on the two-shock approximation (Colella & Woodward 1984; Fryxell et al. 2000).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.