Free Access

Table 4

Column densities and rotational temperatures of the molecules in IRC +10216.

This work Other study


T rot N X(N/NH2) θ s T rot N
Species (K) (cm-2 ) (′′) Note (K) (cm-2 ) Ref.

HC3N 24.7 ± 18.5 (1.4 ± 0.2) × 1015 6.7 × 10-7 30 1 28 8.0 × 1014 10
26 1.7 × 1015 11
12.7 7.9 × 1014 14
HC5N 18.8 ± 1.3 (4.6 ± 0.2) × 1014 2.2 × 10-7 30 1 29 2.3 × 1014 11
HC7N 12.1 ± 1.3 (3.7 ± 0.4) × 1014 1.8 × 10-7 30 2 26 1.29 × 1014 11
HC9N 20.9 ± 10.7 (2.5 ± 1.4) × 1013 1.2 × 10-8 30 2 23 2.7 × 1013 11
12 4.0 × 1013 17
NH3 (para)a 39.1 ± 10.5 (2.3 ± 0.8) × 1014 1.1 × 10-7 18 3 133 4.2 × 1013 20
NH3 (para)b 62.3 ± 5.9 (2.7 ± 0.5) × 1014 1.3 × 10-7 18 3
NH3 (ortho)c 39.1 ± 10.5 (2.9 ± 0.9) × 1014 1.4 × 10-7 18 3
NH3 (ortho)d 130.7 ± 17.0 (1.5 ± 0.4) × 1014 7.1 × 10-8 18 3
SiC2 31.8 ± 0.9 (1.2 ± 0.0) × 1015 5.7 × 10-7 27 4 16 2.2 × 1014 11
96 2.35 × 1015 10
14 9.5 × 1014 16
60 1.9 × 1015 16
SiC4 22.3 ± 17.5 (1.1 ± 0.4) × 1013 5.2 × 10-9 27 5 15 7 × 1012 12
C2S 39.2 ± 135.3 (2.3 ± 0.8) × 1014 1.1 × 10-7 30 2 14 1.5 × 1014 13
C3S 20.4 ± 13.7 (2.2 ± 0.4) × 1013 1.0 × 10-8 30 2 33 4.9 × 1013 11
17 3.6 × 1013 14
c-C3H2 (para) 5.5 ± 0.6 (8.9 ± 0.5) × 1013 4.2 × 10-8 30 6 8 1.22 × 1014 10
c-C3H2 (ortho) 5.5 ± 0.6 (1.2 ± 0.3) × 1014 5.7 × 10-8 30 6 5.7 4.82 × 1014 10
C6H 26.9 ± 4.0 (5.8 ± 0.5) × 1012 2.8 × 10-9 30 7 4 × 1012 15
30 (6.1−8.0) × 1012 21
MgNC 25.8 ± 54.9 (3.9 ± 1.5) × 1013 1.9 × 10-8 30 8 15 2.5 × 1013 11
8.6 7.8 × 1013 10
C3N 20.2 ± 1.1 (3.1 ± 0.3) × 1014 1.5 × 10-7 36 9 35 4.54 × 1014 10
15 4.1 × 1014 11
20 2.5 × 1014 18
C4H 18.5 ± 7.6 (2.4 ± 0.2) × 1015 1.1 × 10-6 30 6 53 8.1 × 1015 10
35 3.0 × 1015 18
48 5.6 × 1015 16
15 2.4 × 1015 11
l-C5H () 8.3 ± 2.0 (2.9 ± 0.6) × 1013 1.4 × 10-8 30 6 27 2.9 × 1014 11
l-C5H () 20.9 ± 19.9 (1.2 ± 2.3) × 1014 5.7 × 10-8 30 6 39 2.0 × 1014 11
25 4.4 × 1013 18
C6H () 20.7 ± 2.4 (1.0 ± 0.2) × 1014 4.8 × 10-8 30 6 46 1.13 × 1014 11
C6H () 47.2 ± 10.3 (1.0 ± 0.1) × 1014 4.8 × 10-8 30 6 35 1.65 × 1014 11
35 5.5 × 1013 18
C8H () 13.9 ± 1.3 (8.4 ± 1.4) × 1012 4.0 × 10-9 30 6 13 8 × 1012 19
52 1.0 × 1013 18
H13CCCCCN 27.6 ± 3.5 (1.2 ± 0.1) × 1013 5.7 × 10-8 30 2
HCC13CCCN 9.4 ± 1.6 (6.4 ± 1.1) × 1012 3.0 × 10-9 30 2
HCCC13CCN 13.7 ± 3.2 (7.2 ± 1.3) × 1012 3.4 × 10-9 30 2
HCCCC13CN 19.6 ± 16.1 (1.1 ± 0.4) × 1013 5.2 × 10-8 30 2

Notes. To Col. 1 – (a) NH3 (1, 1) and (2, 2) are included in the fit. (b) NH3 (1, 1), (2, 2) and (4, 4) are included in the fit. (c) NH3 (3, 3) with Trot derived from the (1, 1) and (2, 2) lines. (d) NH3 (3, 3) and NH3 (6, 6) are included in the fit. Notes on the source sizes (θs) of individual molecules (Col. 4). (1) Source sizes are determined by new JVLA observations (Keller, in prep.); (2) Their sizes are taken to be the same as that of HC5N; (3) NH3 may originate from the same region as the high J transitions of centrally peaked molecules like SiS (6–5) which has a typical size of 18′′ (Bieging & Tafalla 1993; Lucas et al. 1995); (4) Lucas et al. (1995); (5) the source size is assumed to be the same as that of SiC2; (6) the size is taken to be the same as that of C4H (Guelin et al. 1993); (7) the size is based on the chemical model of Cordiner & Millar (2009); (8) Guelin et al. (1993); (9) Bieging & Tafalla (1993).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.