Free Access

Table 1

Taylor expansion of the ωM,O,P coefficients for small optical path intervals.

Coefficient Maxt Expansion

ω M 0.14 (t(t(t(t(t(t((140 − 18t)t − 945) + 5400) − 25   200) + 90   720) − 226   800) + 302   400))/907   200
ω O 0.18 (t(t(t(t(t(t((10 − t)t − 90) + 720) − 5040) + 30   240) − 151   200) + 604   800))/1   814   400
ω P 0.18 (t(t(t(t(t(t((35 − 4t)t − 270) + 1800) − 10   080) + 45   360) − 151   200) + 302   400))/907   200

Notes. Taylor expansion of the interpolation coefficients of the BESSER method for small τMO values (for the sake of notational simplicity we use t ≡ τMO). Column 2 of the table indicates the approximate maximum value of τMO for which this expansion is more accurate, using double precision arithmetics, than the expressions given by Eqs. (11)–(13). We use the Horner rule in Col. 3, which provides a better numerical accuracy and also reduces the number of multiplications in comparison to the explicit expansion of the Taylor power series.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.