Free Access

   

Table 3:

Derived energy input and decay rates and corresponding minimum efficiencies.
  $\dot{E}_{\rm in}$ $\vert\dot{E}_{\rm decay,HD}\vert$ $\epsilon _{\rm HD}$ $\vert\dot{E}_{\rm decay,pot}\vert$ $\epsilon _{\rm pot}$ $\vert\dot{E}_{\rm decay,R_{25}}\vert$ $\epsilon _{\rm R_{25}}$ $E_{\rm kin}$ $f_{>R_{25}}^{E_{\rm kin}}$ $f_{>R_{25}}^{\dot{E}_{\rm decay,HD}}$ $\epsilon_{>R_{25}}$
  1039 erg s-1 1039 erg s-1   1039 erg s-1   1039 erg s-1   1054 erg      
Name (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
NGC 5194 92.39 3.41 0.037 7.08 0.077 0.45 0.005 28.20 0.26 0.17 0.006
NGC 628 18.48 1.97 0.106 2.06 0.111 0.06 0.003 8.39 0.38 0.28 0.027
NGC 3184 19.90 0.82 0.041 0.96 0.048 0.04 0.002 11.03 0.21 0.13 0.005
NGC 3351  8.96 0.16 0.018 1.08 0.121 0.06 0.006  7.12 0.15 0.17 0.003
NGC 6946 60.07 4.44 0.074 5.63 0.094 0.28 0.005 17.01 0.32 0.29 0.020
NGC 5055 30.54 1.56 0.051 3.59 0.117 0.15 0.005 58.98 0.31 0.15 0.008
NGC 4736  3.47 0.52 0.151 6.42 1.848 0.29 0.083  3.52 0.17 0.12 0.018
NGC 7793  2.72 1.87 0.686 1.95 0.716 0.13 0.050  3.57 0.17 0.07 0.047
IC 2574  0.24 2.18 9.009 0.60 2.459 0.10 0.417  4.52 0.28 0.18 1.600
NGC 4214  0.06 1.28 $\!\!$22.457 1.17 $\!\!$20.549 0.21 3.653  1.33 0.49 0.42 7.831
HO II  0.04 1.77 $\!\!$50.070 0.67 $\!\!$19.065 0.17 4.900  1.81 0.59 0.50 $\!\!\!$18.554

Notes. (1) Total kinetic energy provided by infalling gas, calculated from Eq. (3) using $\dot{M} = \dot{M}_{\rm SF}$ and $v_{\rm in} = v_{\rm rot}$. (2) Total dissipation rate of turbulent kinetic energy $\vert\dot{E}_{\rm decay,HD}\vert$ obtained from integrating Eq. (2) over the entire galaxy using $L_{\rm d} $ derived from vertical hydrostatic equilibrium. (3) Minimum efficiency $\epsilon_{\rm HD} = \vert\dot{E}_{\rm decay,HD}\vert/\dot{E}_{\rm in}$ required for the conversion of infall motion into turbulent energy in the disk. (4) Integrated turbulent decay rate $\vert\dot{E}_{\rm decay,pot}\vert$ based on the potential method. (5) Corresponding minimum efficiency $\epsilon _{\rm pot}$. (6) Integrated turbulent decay rate $\vert\dot{E}_{\rm decay,R_{25}}\vert$ based on the assumption that the outer scale of the turbulent velocity field is equal to the size of the disk $L_{\rm d} \sim2~R_{25}$. (7) The corresponding required minimum efficiency $\epsilon _{\rm R_{25}}$ for accretion driven turbulence to work. (8) Total kinetic energy $E_{\rm kin}$ integrated over the whole galaxy. (9) Fraction of total kinetic energy outside the optical radius R25. (10) Fraction of turbulent energy decay rate outside of R25 using the disk vertical scale height from hydrostatic balance. The total rate is given in Col. (2). (11) Corresponding required accretion efficiency to drive the turbulence in the outer disk for R > R25. Compare to the total galactic value given in Col. (3). The outer disk value is typically a factor of 5 lower.


Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.