Free Access

 

 

Table 1:

Slope s of a power law fit ( $P\propto t_{\rm p}^{-s}$) of the $t_{\rm p}$ - P diagram with and without the assumption of the DLR (Eq. (8)) for pulses.

$L_{\rm min}$ (erg s-1)
s (with DLR) s (without DLR)
1051 0.27 0.091
1050.5 0.24 0.093
1050 0.22 0.096
$L_{\rm max}$ (erg s-1)    
1053.5 0.24 0.093
1054 0.22 0.096
$\delta$    
2.0 0.27 0.081
1.5 0.27 0.096
$E_{\rm p}$ (keV)    
400 0.33 0.089
600 0.33 0.088
800 0.33 0.096
$\sigma_{\rm t}$    
0.3 0.27 -
0.6 0.22 -
1.0 0.15 -
1.5 0.09 -
Threshold    
:2 0.30 0.11
x2 0.24 0.085

Notes. In the six blocks we respectively vary the lower (i); and upper (ii) limits of the pulse luminosity function; (iii) the slope of the luminosity function; (iv) the central value of a log-normal distribution for $E_{\rm p}$; (v) the dispersion of the DLR; (vi) the detection threshold. The first row corresponds to our reference case with $L_{\rm min}=10^{51}$ erg s -1, $L_{\rm max}=10^{53}$ erg s-1, $\delta=1.7$, $\sigma_{\rm t}=0.3$ dex. It also assumes the validity of the Amati-like relation (Eq. (7)) with a dispersion of 0.3 dex and adopts the threshold criterion for BATSE given by Band (2003). In each block only one parameter is varied, the others keeping the values corresponding to the reference case.


Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.