Free Access

 

 

Table 7:

Oppolzer terms in longitude depending on triaxiality.
    Oppolzer A.M
Argument Period $\sin(\omega t)$ LC $\sin(\omega t)$
  d arcsec arcsec
    10-7 10-7
$2\Phi$ -121.51 -11 967 515 5 994 459
$2L_{\rm S}-2\Phi$ 58.37 -3 784 751 2 880 826
$M+2\Phi$ -264.6 1 490 497 132 590
$M-2\Phi+2L_{\rm S}$ 46.34 -66 849 54 201
$M-2\Phi$ 78.86 58 400 -39 519
$2L_{\rm S}+2\Phi$ 1490.35 5448 -38 866
$-M-2\Phi+2L_{\rm S}$ 78.86 19 476 -13 179
$2M+2\Phi$ 1490.35 1062 -7587
$2M-2\Phi+2L_{\rm S}$ 38.41 -876 739
$2M-2\Phi$ 58.37 390 -297
$M +2\Phi+2L_{\rm S}$ 195.26 67 121
$-M+2\Phi+2L_{\rm S}$ -264.66 -263 -23
$2M+2\Phi+2L_{\rm S}$ 104.47 1 -1

Notes. Comparison with the corresponding nutation coefficients of the AMA in the tables of Cottereau & Souchay (2009).


Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.