Open Access

 

 

Table 1:

Observed line parameters in TMC-1 and L1527.
      Frequency $T_{\rm MB}$b ${\it\Delta} v$b $\int T_{\rm MB} {\rm d}v$ ( $3 {\sigma}$) rmsc $V_{\rm LSR}$b
Species Transition Sa (GHz) (K) (km s-1) (K km s-1) (mK) (km s-1)
TMC-1
CCH $J=3/2{-}1/2 \ F=1{-}1$ 0.17 87.284156(30) 1.538(55) 0.49(2) 0.795(13) 8.8 5.907(9)
N=1-0 $J=3/2{-}1/2 \ F=2{-}1$ 1.67 87.316925(4) 2.144(78) 0.59(3) 1.336(15) 8.7 5.869(11)
  $J=3/2{-}1/2 \ F=1{-}0$ 0.83 87.328624(6) 1.571(59) 0.56(2) 0.924(15) 9.2 5.912(10)
  $J=1/2{-}1/2 \ F=1{-}1$ 0.83 87.402004(5) 1.711(101) 0.55(4) 0.963(22) 13.4 5.853(16)
  $J=1/2{-}1/2 \ F=0{-}1$ 0.33 87.407165(11) 1.549(110) 0.53(4) 0.860(21) 14.6 5.789(19)
  $J=1/2{-}1/2 \ F=1{-}0$ 0.17 87.446512(23) 1.424(52) 0.52(2) 0.808(15) 9.5 5.914(9)
C13CH $J=3/2{-}1/2 \ F_1=2{-}1 \ F=5/2{-}3/2$ 2.00 85.2293354(26) 0.059(5) 0.52(5) 0.032(5) 3.1 5.84(2)d
N=1-0 $J=3/2{-}1/2 \ F_1=2{-}1 \ F=3/2{-}1/2$ 1.26 85.2328050(22) 0.035(6) 0.56(10) 0.020(5) 3.2 5.89(4)d
  $J=3/2{-}1/2 \ F_1=1{-}0 \ F=3/2{-}1/2$ 1.27 85.2569879(33) 0.041(5) 0.43(6) 0.019(4) 3.4 5.83(3)d
  $J=1/2{-}1/2 \ F_1=1{-}1 \ F=1/2{-}3/2$ 0.62 85.3039898(33) 0.021(4)e 0.69(17)e 0.014(6)e 2.7 5.89(7) $^{{\rm d, e}}$
  $J=1/2{-}1/2 \ F_1=1{-}1 \ F=3/2{-}3/2$ 1.21 85.3074593(33) 0.034(4) 0.53(8) 0.020(5) 2.9 5.83(3)d
13CCH $J=3/2{-}1/2 \ F_1=2{-}1 \ F=5/2{-}3/2$ 2.00 84.119329(17) 0.037(4) 0.52(7) 0.020(4) 2.8 5.84(3)
N=1-0 $J=3/2{-}1/2 \ F_1=2{-}1 \ F=3/2{-}1/2$ 1.22 84.124143(20) 0.026(5) 0.46(10) 0.012(4) 2.8 5.80(4)
  $J=1/2{-}1/2 \ F_1=0{-}1 \ F=1/2{-}1/2$ 0.46 84.183977(28) 0.026(5)e 0.28(7)e 0.007(3)e 3.5 5.71(3)e
L1527
CCH $J=3/2{-}1/2 \ F=1{-}1$ 0.17 87.284156(30) 1.932(19) 0.53(1) 1.112(20) 12.8 6.026(2)
N=1-0 $J=3/2{-}1/2 \ F=2{-}1$ 1.67 87.316925(4) - - 3.592(21) 13.3 -
  $J=3/2{-}1/2 \ F=1{-}0$ 0.83 87.328624(6) - - 2.447(23) 14.4 -
  $J=1/2{-}1/2 \ F=1{-}1$ 0.83 87.402004(5) - - 2.602(21) 13.3 -
  $J=1/2{-}1/2 \ F=0{-}1$ 0.33 87.407165(11) 2.775(25) 0.60(1) 1.801(24) 13.5 5.846(3)
  $J=1/2{-}1/2 \ F=1{-}0$ 0.17 87.446512(23) 2.014(19) 0.52(1) 1.162(21) 13.3 6.011(2)
C13CH $J=3/2{-}1/2 \ F_1=2{-}1 \ F=5/2{-}3/2$ 2.00 85.2293354(26) 0.163(10) 0.43(3) 0.078(6) 4.4 5.950(5)f
N=1-0 $J=3/2{-}1/2 \ F_1=2{-}1 \ F=3/2{-}1/2$ 1.26 85.2328050(22) 0.104(10) 0.56(3) 0.060(7) 3.9 5.950(5)f
  $J=3/2{-}1/2 \ F_1=1{-}0 \ F=1/2{-}1/2$ 0.65 85.2477276(33) 0.058(7) 0.50(7) 0.028(6) 3.9 5.950(5)f
  $J=3/2{-}1/2 \ F_1=1{-}0 \ F=3/2{-}1/2$ 1.27 85.2569879(33) 0.098(8) 0.45(4) 0.047(6) 4.2 5.950(5)f
  $J=1/2{-}1/2 \ F_1=1{-}1 \ F=1/2{-}3/2$ 0.62 85.3039898(33) 0.046(5) 0.55(7) 0.026(4) 2.4 5.950(5)f
  $J=1/2{-}1/2 \ F_1=1{-}1 \ F=3/2{-}3/2$ 1.21 85.3074593(33) 0.110(7) 0.42(3) 0.050(3) 2.7 5.950(5)f
  $J=1/2{-}1/2 \ F_1=0{-}1 \ F=1/2{-}1/2$ 0.62 85.3140918(33) 0.051(5) 0.42(4) 0.024(4) 2.8 5.950(5)f
13CCH $J=3/2{-}1/2 \ F_1=2{-}1 \ F=5/2{-}3/2$ 2.00 84.119329(17) 0.093(5) 0.48(3) 0.047(2) 1.6 5.94(1)
N=1-0 $J=3/2{-}1/2 \ F_1=2{-}1 \ F=3/2{-}1/2$ 1.22 84.124143(20) 0.056(6) 0.53(7) 0.033(3) 1.6 5.95(3)
  $J=3/2{-}1/2 \ F_1=1{-}0 \ F=1/2{-}1/2$ 0.66 84.151352(16) 0.030(5) 0.48(9) 0.015(2) 1.5 5.90(4)
  $J=3/2{-}1/2 \ F_1=1{-}0 \ F=3/2{-}1/2$ 1.33 84.153305(15) 0.059(4) 0.51(4) 0.034(2) 1.4 5.89(2)
  $J=1/2{-}1/2 \ F_1=0{-}1 \ F=1/2{-}1/2$ 0.46 84.183977(28) 0.024(3) 0.36(5) 0.011(2) 2.0 5.90(2)
  $J=1/2{-}1/2 \ F_1=1{-}1 \ F=1/2{-}3/2$ 0.46 84.192487(30) 0.029(4) 0.50(8) 0.016(4) 2.8 5.90(3)
  $J=1/2{-}1/2 \ F_1=1{-}1 \ F=3/2{-}3/2$ 1.22 84.206865(19) 0.067(3) 0.46(3) 0.033(2) 1.7 5.90(1)
  $J=1/2{-}1/2 \ F_1=1{-}1 \ F=1/2{-}1/2$ 0.22 84.225376(20) - - $\leq$ 4.6 3.1 -

Notes.  The numbers in parentheses represent the errors in units of the last significant digits. (a) Intrinsic line strength. (b) Obtained by the Gaussian fit. (c) The rms noise at an emission free region averaged over the line width. For non detected lines, the line widths of 0.5 km s-1 are assumed. (d) Calculated on the basis of the rest frequencies of the C13CH lines obtained in this study (Table A.1). (e) Marginal detection. (f) See Sect. 3.1 and Appendix A.


Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.