Free Access

 

 

Table 3:

Maximum likelihood fits of an exponential surface density profile to the radial distribution of CCSNe.
Sample $N_{\rm SN}$ $\tilde{h}_{\rm SN}$ $\hat{h}_{\rm SN}$ $\tilde{P}_{\rm KS}$ $\hat{P}_{\rm KS}$
(1) (2) (3) (4) (5) (6)
Full sample 224 $0.29\pm0.01$ $1.25\pm0.06$ 0.194 0.646
Sa-Sbc 127 $0.31\pm0.02$ $1.35\pm0.09$ 0.235 0.412
Sc-Sd 97 $0.28\pm0.02$ $1.13\pm0.07$ 0.890 0.872
Sa-Sbc (SNe Ib/c) 25 $0.23\pm0.04$ $0.93\pm0.19$ 0.098 0.213
Sc-Sd   (SNe Ib/c) 30 $0.24\pm0.03$ $1.03\pm0.13$ 1.000 0.986
Sa-Sbc (SNe II) 102 $0.32\pm0.02$ $1.46\pm0.10$ 0.441 0.965
Sc-Sd   (SNe II) 67 $0.29\pm0.02$ $1.17\pm0.09$ 0.783 0.793
Sa-Sd   (without bars) 133 $0.29\pm0.02$ $1.18\pm0.08$ 0.273 0.707
Sa-Sd   (with bars) 91 $0.30\pm0.02$ $1.37\pm0.10$ 0.453 0.931
Sa-Sbc (without bars) 58 $0.32\pm0.03$ $1.26\pm0.14$ 0.043 0.523
Sa-Sbc (with bars) 69 $0.29\pm0.02$ $1.43\pm0.13$ 0.899 0.973
Sc-Sd   (without bars) 75 $0.26\pm0.02$ $1.11\pm0.09$ 0.977 0.997
Sc-Sd   (with bars) 22 $0.32\pm0.04$ $1.19\pm0.14$ 0.884 0.829
$-23 < M_{\rm disk} \leq -20.5$ 123 $0.27\pm0.02$ $1.06\pm0.07$ 0.586 0.933
$-20.5 < M_{\rm disk} < -18$ 101 $0.32\pm0.02$ $1.49\pm0.10$ 0.308 0.603
$19.65 < \mu_0^{\rm disk} \leq 20.60$ 102 $0.28\pm0.02$ $1.35\pm0.10$ 0.895 0.840
$20.60 < \mu_0^{\rm disk} < 21.85$ 122 $0.30\pm0.02$ $1.18\pm0.08$ 0.203 0.803
$0^\circ \leq i \leq 30^\circ$ 68 $0.26\pm0.02$ $1.11\pm0.10$ 0.912 0.453
$30^\circ < i \leq 50^\circ$ 156 $0.31\pm0.02$ $1.32\pm0.08$ 0.153 0.719
SNe Ib 20 $0.23\pm0.03$ $0.90\pm0.11$ 0.765 0.993
SNe Ic 27 $0.22\pm0.03$ $0.97\pm0.18$ 0.671 0.644
SNe Ib/c 55 $0.24\pm0.02$ $0.99\pm0.11$ 0.476 0.707
SNe II 169 $0.31\pm0.02$ $1.34\pm0.07$ 0.328 0.746
stars (in Freeman disk) $0.32\pm0.03$ $1.23\pm0.17$    
stars (in SN host disks) $0.26\pm0.02$ 1.00    
H II regions (Freeman disk) $0.26\pm0.13$ $1.00\pm0.50$    
H II regions (SN host disk) $0.21\pm0.11$ $0.80\pm0.40$    

Notes: Column 1 gives the CCSN sample, Col. 2 number of CCSNe in the sample, Col. 3 the maximum likelihood value of $\tilde h_{\rm SN} = h_{\rm SN}/R_{25}$, Col. 4 the maximum likelihood value of $\hat{h}_{\rm SN} = h_{\rm SN}/h$, and Cols. 5 and 6 give the KS test probabilities that the surface density distribution of CCSNe is consistent with an exponential law with the isophotal radius (Col. 5) and scale length (Col. 6) normalizations. The four last lines are not for the SNe, but for the stars (first two of these lines) and H II regions (last two lines), with the centrally extrapolated surface brightness taken from the Freeman disk (first and third of these lines) and the hosts (second and fourth of these lines). The value of unity in Col. 4 in the second of these lines is a direct consequence of $h_{\rm SN} = h$ and thus has no uncertainty associated with it. The values of Col. 4 in the first of these lines is scaled relative to that of the the second of these lines, according to the mean value of $\langle h /R_{25} \rangle$ (Sect. 3). Similarly the last two lines of Col. 4 are scaled to the corresponding values in Col. 3. The statistically significant deviation from an exponential law is highlighted in bold.


Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.