Free Access

 

 

Table 1:

Physical parameters of the different ISM phases.
ISM phase T B $n_{\rm H}$ $f_{\rm ion}$ $n_{\rm i}$ $k_{\parallel{\rm max}}$ $E_{\rm k,min}$
  (K) ( ${\rm\mu G}$) ( ${\rm cm^{-3}}$)   ( ${\rm cm^{-3}}$) ( ${\rm 10^{-9}~cm^{-1}}$) (${\rm keV}$)
HIM (low B) 106 2 0.005-0.01 1 0.005-0.01 3.1-4.4 35-18
HIM (high B) 106 20 0.005-0.01 1 0.005-0.01 3.1-4.4 1500-950
WIM 8000 5 0.2-0.5 0.6-0.9 0.12-0.45 15-29 9.5-2.5
WNM 6000-10 000 5 0.2-0.5 0.007-0.05 0.0014-0.025 1.6-6.9 540-45
CNM 50-100 6 20-50 $4 \times 10^{-4}{-}10^{-3}$ 0.008-0.05 3.9-9.8 175-32
MM 10-20 8.5-850 102-106 ${\la}10^{-4}$   ${\la}4.4$ ${\ga}265$

Note to the table: The different ISM phases are molecular medium (MM), cold neutral medium (CNM), warm neutral medium (WNM), warm ionized medium (WIM) and hot ionized medium (HIM). T is the temperature, B the magnetic field strength, $n_{\rm H}$ the hydrogen density, $f_{\rm ion} = n_{\rm i} / (n_{\rm i} + n_{\rm n})$ the ionization fraction, $n_{\rm i}$ the ion density, $k_{\parallel{\rm max}}$ the maximum parallel wavenumber of Alfvén waves (right-hand side of Eq. (12)), and $E_{\rm k,min}$ the minimum kinetic energy required for positrons to interact resonantly with Alfvén waves (right-hand side of Eq. (13)). Here, we assume a pure-hydrogen gas, for which $n_{\rm i} = f_{\rm ion} ~
n_{\rm H}$ and $n_{\rm n} = (1 - f_{\rm ion}) ~ n_{\rm H}$.


Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.