Free Access

 

 

Table 1:

Various prescriptions for the softening length adopted in some simulations of self-gravitating gaseous discs (see also Fig. 1).
Reference Softening length $\lambda $
Papaloizou & Lin (1989) $0.056 \times (a_{\rm out}-a_{\rm in})\times f(a,R,a_{\rm in},a_{\rm out})$
Adams et al. (1989) $0.1\times R$
Saio & Yoshii (1990) $\{0.01,0.02\} \times a_{\rm out}$
Shu et al. (1990) $0.1\times R$
Morishima & Saio (1994) $0.02 \times a_{\rm out}$
Sterzik et al. (1995)a $0.06 \times \lambda_{\rm c}$
Laughlin et al. (1997) $0.1 \times a_{\rm in}$, $0.1 \times a_{\rm out}$, and $0.001 \times R$
Laughlin et al. (1998) $0.0001+0.01 R \times f(a,a_{\rm in},a_{\rm out})$
Tremaine (2001) $\beta \times R$, with $\beta \approx 10^{-4} {-} 0.2$
Caunt & Tagger (2001)b H=2h
Baruteau & Masset (2008) 0.3 - 0.5 h (depending on scale height)
Li et al. (2009)c $\approx $0.17 to $0.33 \times \Delta a$
this workd $\displaystyle f\left(\frac{h}{a},\frac{R}{a}\right)$
  $\approx $h/e at R=a, homogeneous case;
  see Eqs. (26), (32), (42) and (39)

a $\lambda_{\rm c}$ is the critical wave length of disturbances.
b concerns the magnetic potential.
c $\Delta a$ is the grid spacing, 3D-disc.
d Axisymmetric limit, finite size disc (inner edge $a_{\rm in}$, outer edge $a_{\rm out}$), symmetry with respect to the mid-plane, finite size layer (thickness 2h=H), explicit function of vertical stractification, local validity.


Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.