Free Access
   

Table 1:

Reflectivity $I(\alpha )$, polarization fraction $q(\alpha )$ and polarized intensity $Q(\alpha )$ phase curves for a very deep ($\tau =30$) conservative $(\omega =1)$ Rayleigh scattering atmosphere above a perfectly reflecting Lambert surface (surface albedo $A_{\rm S}=1$).
$\alpha$ [$^{\circ }$] $I(\alpha )$ $q(\alpha )$ [%] $Q(\alpha )$ $a(\alpha)$
2.5 0.795 0.0 0.0000  
7.5 0.785 0.4 0.0031  
12.5 0.766 1.1 0.0084  
17.5 0.740 2.1 0.0155  
22.5 0.708 3.4 0.0241 1.85
27.5 0.671 5.1 0.0342 1.86
32.5 0.630 6.9 0.0435 1.87
37.5 0.587 9.1 0.0534 1.89
42.5 0.542 11.4 0.0618 1.91
47.5 0.497 13.9 0.0691 1.94
52.5 0.453 16.6 0.0752 1.98
57.5 0.410 19.3 0.0791 2.03
62.5 0.368 22.0 0.0810 2.08
67.5 0.329 24.6 0.0809 2.14
72.5 0.292 27.0 0.0788 2.21
77.5 0.259 29.1 0.0754 2.29
82.5 0.228 30.7 0.0700 2.39
87.5 0.199 31.9 0.0635 2.49
92.5 0.174 32.5 0.0566 2.62
97.5 0.150 32.5 0.0488 2.77
102.5 0.130 31.8 0.0413 2.95
107.5 0.111 30.5 0.0339 3.16
112.5 0.094 28.6 0.0269 3.42
117.5 0.079 26.2 0.0207 3.76
122.5 0.066 23.4 0.0154  
127.5 0.054 20.3 0.0110  
132.5 0.043 17.0 0.0073  
137.5 0.033 13.7 0.0045  
142.5 0.025 10.4 0.0026  
147.5 0.018 7.3 0.0013  
152.5 0.013 4.4 0.0006  
157.5 0.008 2.0 0.0002  
162.5 0.005 0.0 0.0000  
167.5 0.002 -1.4 0.0000  
172.5 0.001 -1.9 0.0000  
177.5 0.000      
This model approximates well a conservative, semi-infinite Rayleigh scattering atmosphere. Additionally the fit parameter $a(\alpha)$ for the parametrization of the polarized intensity $Q(\alpha )$ (Eq. (5)) is given for relevant phase angles.
The statistical error of the Monte Carlo calculation for $I(\alpha )$ is smaller than 0.001 for all $\alpha$. The uncertainty of the polarization fraction is less than 0.1% for phase angles between 5 and 165 degrees. Extrapolating the intensity I towards ${\alpha =0^\circ }$ with a quadratic least-squares fit to the first four points ( $\alpha = 2.5^\circ,\ldots, 17.5^\circ$) yields a value $I(0^\circ) = 0.7970$. This agrees with the exact solution $I(0^\circ)=0.7975$ from Prather (1974) to the third digit.

Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.