Free Access
   

Table 2:

Observed bolometric X-ray luminosity scaling relations.
Relation Fitting method
  BCES (Y|X) BCES Orthogonal
  C (1044 erg s-1) $\alpha$ $\sigma_{\rm ln~L, intrinsic}$ C (1044 erg s-1) $\alpha$ $\sigma_{\rm ln~L, intrinsic}$
  R < R500
All            
L1-T1 $6.07\pm0.58$ $2.70\pm0.24$ $0.663\pm0.116$ $7.13\pm1.03$ $3.35\pm0.32$ $0.733\pm0.135$
L1-T3 $5.62\pm0.46$ $2.88\pm0.23$ $0.525\pm0.097$ $6.27\pm0.67$ $3.42\pm0.27$ $0.560\pm0.115$
L1-$Y_{\rm X}$ $5.20\pm0.36$ $0.99\pm0.05$ $0.384\pm0.060$ $5.35\pm0.38$ $1.04\pm0.06$ $0.383\pm0.061$
L1-MY $1.81\pm0.13$ $1.81\pm0.10$ a... $1.74\pm0.13$ $1.96\pm 0.11$ a...
L1-MY MBb $1.45\pm0.12$ $1.90\pm0.11$ a... $1.38\pm0.12$ $2.08\pm 0.13$ a...
Cool core            
L1-T1 $11.15\pm2.42$ $2.71\pm0.48$ $0.432\pm0.108$ $12.79\pm3.80$ $3.15\pm0.63$ $0.479\pm0.135$
L1-$Y_{\rm X}$ $7.71\pm0.58$ $1.04\pm0.07$ $0.234\pm0.103$ $7.84\pm0.65$ $1.06\pm0.09$ $0.236\pm0.107$
Non-cool core            
L1-T1 $4.78\pm0.29$ $2.89\pm0.21$ $0.267\pm0.058$ $4.97\pm0.29$ $3.06\pm0.19$ $0.285\pm0.068$
L1-$Y_{\rm X}$ $4.27\pm0.20$ $0.96\pm0.05$ $0.214\pm0.035$ $4.32\pm0.20$ $0.98\pm0.05$ $0.214\pm0.036$
Disturbed            
L1-T1 $4.18\pm0.59$ $2.49\pm0.56$ $0.497\pm0.215$ $5.43\pm2.74$ $3.19\pm0.78$ $0.646\pm0.346$
L1-$Y_{\rm X}$ $3.72\pm0.27$ $0.92\pm0.09$ $0.245\pm0.120$ $3.85\pm0.32$ $0.96\pm0.08$ $0.249\pm0.123$
Regular            
L1-T1 $7.26\pm0.86$ $2.62\pm0.21$ $0.578\pm0.118$ $7.97\pm1.28$ $3.13\pm0.33$ $0.634\pm0.142$
L1-$Y_{\rm X}$ $6.15\pm0.42$ $0.97\pm0.05$ $0.302\pm0.058$ $6.21\pm0.44$ $1.00\pm0.05$ $0.303\pm0.059$
  0.15 < R < R500
All            
L2-T2 $3.89\pm0.18$ $2.78\pm0.13$ $0.269\pm0.055$ $4.06\pm0.22$ $2.94\pm0.15$ $0.279\pm0.059$
L2-T3 $3.31\pm0.16$ $2.84\pm0.17$ $0.331\pm0.068$ $3.48\pm0.21$ $3.07\pm0.18$ $0.346\pm0.075$
L2-$Y_{\rm X}$ $3.05\pm0.07$ $0.97\pm0.03$ $0.156\pm0.038$ $3.06\pm0.07$ $0.98\pm0.03$ $0.156\pm0.038$
L2-MY $1.09\pm 0.05$ $1.77\pm0.05$ a... $1.08\pm0.04$ $1.80\pm 0.05$ a...
Cool core            
L2-T2 $4.31\pm0.42$ $2.58\pm0.23$ $0.242\pm0.110$ $4.46\pm0.56$ $2.70\pm0.26$ $0.247\pm0.113$
L2-$Y_{\rm X}$ $3.36\pm0.16$ $0.96\pm0.04$ $0.144\pm0.098$ $3.38\pm0.17$ $0.97\pm0.05$ $0.145\pm0.098$
Non-cool core            
L2-T2 $3.74\pm0.21$ $2.89\pm0.18$ $0.231\pm0.035$ $3.88\pm0.22$ $3.02\pm0.19$ $0.237\pm0.039$
L2-$Y_{\rm X}$ $2.91\pm0.06$ $0.97\pm0.03$ $0.114\pm0.027$ $2.92\pm0.06$ $0.98\pm0.03$ $0.114\pm0.027$
Disturbed            
L2-T2 $3.58\pm0.41$ $2.88\pm0.37$ $0.295\pm0.080$ $4.00\pm0.73$ $3.18\pm0.38$ $0.312\pm0.090$
L2-$Y_{\rm X}$ $2.77\pm0.07$ $0.99\pm0.04$ $0.111\pm0.096$ $2.79\pm0.08$ $0.99\pm0.04$ $0.111\pm0.096$
Regular            
L2-T2 $4.13\pm0.21$ $2.68\pm0.11$ $0.225\pm0.070$ $4.20\pm0.23$ $2.76\pm0.11$ $0.231\pm0.075$
L2-$Y_{\rm X}$ $3.24\pm0.08$ $0.94\pm0.02$ $0.115\pm0.045$ $3.24\pm0.08$ $0.94\pm0.02$ $0.115\pm0.045$
Each set of observables (L,A) is fitted with a power law relation of the form $h(z)^n L = C~ (A/A_0)^{\alpha}$, with A0 = 5 keV, $2 \times 10^{14}~M_{\odot}$ keV and $2 \times 10^{14}~M_{\odot}$, and n= -1, -9/5 and -7/3 for T, $Y_{\rm X}$ and M, respectively. Results are given for the BCES (Y|X) and BCES orthogonal fitting methods (see Sect. 2.4). a Since M is derived from $Y_{\rm X}$, the values of the scatter in the L-M relation are identical to those for the $L{-}Y_{\rm X}$ relation; b corrected for Malmquist bias (see Appendix B). L1/T1: luminosity/temperature interior to R500; L2/T2: luminosity/temperature in the [0.15-1] R500 aperture; T3: temperature in the [0.15-0.75] R500 aperture; MY: mass measured from the $M_{500}{-}Y_{\rm X}$ relation of Arnaud et al. (2007).

Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.