Free Access
 

 

Table 2:

Reactions and rate coefficients adopted in the chemical model.
Cosmic rays ionization Rate in s-1, with $\zeta$ the rate of cosmic ray ionization of H2. Ref.
H + CR $\rightarrow$ H+ + e 0.46$\zeta$ c
D + CR $\rightarrow$ H+ + e 0.46$\zeta$ c
H2 + CR $\rightarrow$ H + H 1.5$\zeta$ c
H2 + CR $\rightarrow$ H2+ + e 0.96$\zeta$ c
HD + CR $\rightarrow$ H + D 1.5$\zeta$ c
HD + CR $\rightarrow$ HD+ + e 0.96$\zeta$ c
D2 + CR $\rightarrow$ D + D 1.5$\zeta$ c
Reaction Rate in cm3 s-1 Ref.
H2 + D $\rightarrow$ H + HD dex $(-56.4737+5.88886\times
\log({\rm Tg})+7.196292\times \log({\rm Tg})^2+2.25069\times \log({\rm Tg})^3-2.16903\times
\log({\rm Tg})^4$ a
  $+0.317887\times \log({\rm Tg})^5$  
HD + H $\rightarrow$ H2 + D $5.25\times 10^{-11}\times \exp(-4430/{\rm Tg})$ if Tg < 200 K  
  $5.25\times 10^{-11}\times \exp((-4430/{\rm Tg})+(173~900/{\rm Tg}^2))$ if Tg >200 K a
D+ + H2 $\rightarrow$ H+ + HD $10^{-9}\times (0.417+0.846\times
\log({\rm Tg})-0.137\times \log({\rm Tg})^2$ a
H+ + HD $\rightarrow$ D+ + H2 $1.1\times 10^{-9} \times \exp{-488/{\rm Tg}}$ a
H+ + D $\rightarrow$ D+ + H $2\times 10^{-10}\times {\rm Tg}^{0.402}\times
\exp{-37.1/{\rm Tg}}-3.31\times 10^{-17}\times {\rm Tg}^{1.48}$ a
H + D+ $\rightarrow$ H+ + D $2.06\times 10^{-10}\times {\rm Tg}^{0.396} \times
\exp{-33/{\rm Tg}}+2.03\times 10^{-9}\times {\rm Tg}^{-0.332}$ a
HD + D+ $\rightarrow$ D2 + H+ $1\times 10^{-9}$ a
H+ + D2 $\rightarrow$ D+ + HD $2.1\times 10^{-9}\times \exp{-491/{\rm Tg}}$ a
H2 + H+ $\rightarrow$ H2+ + H $\exp(-21237.15/{\rm Tg})\times (3.3232183\times
10^{-7}+3.3735382\times 10^{-7}\times \ln({\rm Tg})-1.4491368\times 10^{-7}\times
\ln({\rm Tg})^2$  
  $+3.4172805\times 10^{-8}\times \ln({\rm Tg})^3-4.7813720\times 10^{-9}\times
\ln({\rm Tg})^4+3.9731542\times 10^{-10}\times \ln({\rm Tg})^5$  
  $-1.8171411\times 10^{-11}\times \ln({\rm Tg})^6+3.5311932\times 10^{-13}\times
\ln({\rm Tg})^7$ b
H + H+ $\rightarrow$ H2+ + phot dex $(-19.38-1.523\times
\log({\rm Tg})+1.118\times (\log({\rm Tg}))^2-0.1269\times (\log({\rm Tg})^3))$ a
H + H2+ $\rightarrow$ H2 + H+ 6.4 $\times $ 10-10 a
H + HD+ $\rightarrow$ H2 + D+ $\times $ 10-9 a
H+ + e $\rightarrow$ H + phot 2.753  $\times 10^{-14}
\times (315614/{\rm Tg})^{1.5}\times (1+(115188/{\rm Tg})^{0.407})^{-2.242}$ b, caseB
D+ + e $\rightarrow$ D+ phot 2.753  $\times 10^{-14}
\times (315614/{\rm Tg})^{1.5}\times (1+(115188/{\rm Tg})^{0.407})^{-2.242}$ b, case B
H2+ + e $\rightarrow$ H + H 10-8 if Tg < 617 K  
  1.32 $^{-6}\times {\rm Tg}^{-0.76}$ if Tg > 617 K a
HD+ + e $\rightarrow$H + D 7.2  $\times 10^{-8}\times {\rm Tg}^{-0.5}$ a
H + e $\rightarrow$ H- + phot dex $(-17.845+0.762\times \log({\rm Tg}+0.1523 \times
(\log({\rm Tg}))^2-0.03274 \times \log({\rm Tg})^3)$ a
D + e $\rightarrow$ D- + phot dex $(-17.845+0.762 \times \log({\rm Tg})+0.1523
\times
(\log({\rm Tg}))^2-0.03274 \times \log({\rm Tg})^3)$ a
H + e $\rightarrow$ H+ + e + e $\exp(-3.271396\times 10+1.3536\times 10\times \ln({\rm Te})-5.7393\times
\ln({\rm Te})^2+1.5631\times \ln({\rm Te})^3)$ a
D + e $\rightarrow$ D+ + e + e $\exp(-3.271396\times 10+1.3536\times 10\times \ln({\rm Te})-5.7393\times
\ln({\rm Te})^2+1.5631\times \ln({\rm Te})^3)$ a
H- + H $\rightarrow$ H2 + e (higher value) $5\times 10^{-9} $ b
H- + H $\rightarrow$ H2 + e (lower value) $0.65\times 10^{-9}$ b
D- + H $\rightarrow$ HD + e(higher value) $0.5 \times 5\times 10^{-9}$ b
D- + H $\rightarrow$ HD + e(lower value) $0.5 \times 0.65\times
10^{-9}$ b
H- + D $\rightarrow$ HD + e(higher value) $0.5 \times 5\times 10^{-9}$ b
H- + D $\rightarrow$ HD + e(lower value) $0.5 \times 0.65\times
10^{-9}$ b
D- + D $\rightarrow$ D2 + e (higher value) $5\times 10^{-9} $ b
D- + D $\rightarrow$ D2 + e (lower value) $0.65\times 10^{-9}$ b
H+ + D- $\rightarrow$ HD+ + e $1.1\times 10^{9}\times ({\rm Tg}/300)^{-0.4}$ a
D+ + H- $\rightarrow$ HD+ + e $1.1\times 10^{9}\times ({\rm Tg}/300)^{-0.4}$ a

a Glover & Savin (2008); b Abel & Glover (2008); c Walmsley et al. 2004.


Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.