Free Access
 

 

Table 1:

Probabilities that a periodogram power (Pn, p, P or z) can exceed a given value (Pn,0, p0, P0 or z0) for different normalizations (from Cumming et al. 1999).
Reference level Range Probability
population variance $P_{n}\in[0,\infty)$ ${\rm Prob}(P_{n}>P_{n,0})=\exp(-P_{n,0})$
sample variance $p\in[0,1]$ ${\rm Prob}(p>p_{0})=\left(1-p_{0}\right)^{\frac{N-3}{2}}$
- '' - $P\in[0,\frac{N-1}{2}]$ ${\rm Prob}(P>P_{0})=\left(1-\frac{2P}{N-1}\right)^{\frac{N-3}{2}}$
residual variance $z\in[0,\infty)$ ${\rm Prob}(z>z_{0})=\left(1+\frac{2z_{0}}{N-3}\right)^{-\frac{N-3}{2}}$


Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.