Free Access
   

Table 1:

Table of the most polarizing atomic spectral lines of the second solar spectrum (3160 Å-6995 Å). The lines are listed by increasing wavelength. The various quantities that are listed for each line are described in Sect. 2.3.

#
$\lambda^{\rm Sun}$ Elem. W $_{\lambda}$ W $_{\lambda}$/$\lambda$ $(Q/I)^{\rm M}$ $(Q/I)^{\rm m}$ Q/I Type Notes
  (Å)   (mÅ) (F) $\;$ (%) $\;$ (%) (%)    

--------------- Volume III ---------------
 

1
3179.342 Ca  II 580 182 0.85 0.50 0.35 W 1

2
3217.935 Ti  I 35 11.1 0.75 0.60$^{\ast }$ 0.15 S$^{\ast }$ 2

3
3230.592 Sm  II 34 10.5 0.86 0.65$^{\ast }$ 0.21 S$^{\ast }$ 3

4
3234.518 Ti  II 49 15.2 0.62 0.50 0.12 M1 4
          1.35 0.85 0.50    

5
3242.007 Ti  II 270 83.0 0.95 0.80 0.15 M1  
          1.07 0.84 0.23    

6
3247.569 Cu  I 246 76.0 1.75 0.82 0.93 M0 5

7
3248.612 /Ti  II Ti  I 148 46.0 0.57 0.40 0.17 W 6

8
3260.552 Nb  II 20 6.1 0.85 0.70$^{\ast }$ 0.15 S  

9
3273.052 Zr  II 78 23.9 0.77 0.58 0.19 W  

10
3273.972 Cu  I 221$^{\ast }$ 67.4 0.36 0.19 0.17 W 7

11
3308.399 Ti  I 32 9.7 0.92 0.58$^{\ast }$ 0.34 S  

12
3322.949 Ti  II (Zr  II) 495$^{\ast }$ 157.3 0.42 0.27 0.15 M1 8
          0.75 0.64 0.11    

13
3326.777 //Ti  II-Zr  II 214 64.0 0.275 0.175 0.100 W  

14
3372.812 Ti  II 459 135.9 0.67 0.55 0.12 M0  

15
3380.260 Ti  II 30 31.2 0.25 0.15 0.10 W 9

16
3380.585 Ni  I 809 239 0.275 0.175 0.100 W 9

17
3383.765 Ti  II 430$^{\ast }$ 127 0.65 0.53 0.12 M0  

18
3391.973 Zr  II 113$^{\ast }$ 20.0 0.42 0.32 0.10 W  

19
3405.126 Co  I 206 60.5 0.67 0.49 0.18 M0  

20
3407.805 Dy  II 60 18.8 0.42 0.32$^{\ast }$ 0.10 S$^{\ast }$  

21
3433.579 //Ni  I-Cr  I 492 143 0.25 0.15 0.10 W  

22
3439.229 Gd  II 10 3.5 0.53 0.40$^{\ast }$ 0.13 S  

23
3446.271 Ni  I 470 136 0.335 0.235 0.100 M1 10
          0.575 0.435 0.14    

24
3452.905 Ni  I 247 73.1 0.41 0.22 0.19 W  

25
3453.512 Co  I 310 87.9 0.36 0.24 0.12 W 11

26
3458.467 Ni  I 656 189 0.28 0.14 0.14 M1  
          0.60 0.42 0.18    

27
3461.667 Ni  I 758 219 0.33 0.16 0.17 W 10

28
3464.474 Sr  II (Fe  II) 63 18.2 0.44 0.32$^{\ast }$ 0.12 S  

29
3465.766 Co  I 69 84.2 0.240 0.125 0.115 W 12

30
3465.880 Fe  I 544 158 0.26 0.15 0.11 W 12

31
3469.493 Ni  I (V  II) 180 52.2 0.27 0.15 0.12 W  

32
3472.558 Ni  I 374 136 0.31 0.175 0.135 W  

33
3476.712 Fe  I 465 136 0.34 0.19 0.15 W  

34
3485.110 Ni  I 100 29.2 0.33 0.23$^{\ast }$ 0.10 S$^{\ast }$  

35
3492.975 Ni  I 826 239 0.25 0.15 0.10 W  

36
3494.515 /Cr  II Dy  II 46 13.2 0.375 0.26$^{\ast }$ 0.115 S$^{\ast }$ 13

37
3504.892 Fe  I /Ti  II 132 37.6 0.36 0.22 0.14 W  

38
3510.846 Ti  II 87 29.1 0.40 0.28$^{\ast }$ 0.12 S  

39
3515.066 Ni  I 718 202 0.22 0.10 0.12 W  

40
3519.618 Zr  I 7.5 2.6 0.36 0.23$^{\ast }$ 0.13 S  

41
3521.270 Fe  I 381 110 0.24 0.11 0.13 W  

42
3533.014 Fe  I 97 31.4 0.35 0.20 0.15 W 14

43
3550.222 -Dy  II 43 12.0 0.42 0.31 0.11 S 15

44
3553.095 Pd  I 48$^{\ast }$ 3.4 0.385 0.20$^{\ast }$ 0.185 S 16

45
3554.937 Fe  I 404 111 0.21 0.11 0.10 W  

46
3556.597 Zr  II 23 7.0 0.32 0.18$^{\ast }$ 0.14 S  

47
3558.532 /Fe  I-Sc  II 485 137 0.23 0.05 0.18 W  

48
3565.396 Fe  I 990 274 0.20 0.08 0.12 W 17

49
3566.383 Ni  I 458 141 0.32 0.22 0.10 M1 17
          0.38 0.30 0.08    

50
3570.134 Fe  I 1380 387 0.34 0.20 0.14 M1  
          0.41 0.29 0.12    

51
3578.693 Cr  I 488 142 0.42 0.17 0.25 M1  
          0.435 0.285 0.150    

52
3581.209 Fe  I 2144 599 0.34 0.18 0.16 M1  
          0.41 0.28 0.13    

53
3585.714 Fe  I 168 63.0 0.22 0.11 0.11 W 18

54
3585.844 Co  I?-Ti  I 25 22.6 0.40 0.26$^{\ast }$ 0.14 S 18

55
3586.990 Fe  I 532 147 0.22 0.09 0.13 W  

56
3589.222 Ru  I 18 5.7 0.375 0.275 0.100 S  

57
3590.489 Sc  II 136 37.9 0.21 0.05 0.16 M1 19
          0.375 0.275 0.100    

58
3592.027 II 75 21.0 0.20 0.10 0.10 W  

59
3593.495 Cr  I 436 127 0.775 0.270 0.505 M1  
          0.95 0.27 0.68    

60
3594.638 Fe  I 146 40.8 0.30 0.17 0.13 W  

61
3594.876 Co  I 92 25.7 0.25 0.14 0.11 W  

62
3596.054 Ti  II 95 26.7 0.21 0.07 0.14 W 20

63
3597.712 Ni  I 181 50.2 0.29 0.12 0.17 M1 21
          0.36 0.27 0.09    

64
3600.739 II 69 19.2 0.35 0.25 0.10 W 22

65
3601.198 Zr  I 13 3.6 0.42 0.31$^{\ast }$ 0.11 S  

66
3602.287 Ni  I 94 26.2 0.18 0.06 0.12 W  

67
3605.339 //Cr  I Co  I 495 136 0.24 0.09 0.15 W  

68
3608.869 Fe  I 1046 287 0.31 0.18 0.13 M1  
          0.44 0.26 0.18    

69
3610.166 //Fe  I Ti  I 231 65.4 0.26 0.11 0.15 W  

70
3610.460 Ni  I 250$^{\ast }$ 52.0 0.27 0.08 0.19 W  

71
3618.777 Fe  I 1410 385 0.39 0.15 0.24 M1 23
          0.35 0.25 0.10    

72
3619.400 Ni  I 568 204 0.30 0.16 0.14 W  

73
3621.467 Fe  I 140 40.6 0.19 0.09 0.10 W  

74
3624.733 Ni  I 132 37.1 0.165 0.04 0.125 W  

75
3631.475 //Fe  I Cr  II 1364 369 0.21 0.11 0.10 M1  
          0.31 0.24 0.07    

76
3633.138 II 134$^{\ast }$ 19.0 0.51 0.24 0.27 S  

77
3647.851 Fe  I (Fe  I) 970 313 0.28 0.11 0.17 M1  
          0.31 0.23 0.08    

78
3651.800 Sc  II 114 39.1 0.14 0.04 0.10 W  

79
3664.097 Ni  I 130 43.8 0.19 0.08 0.11 W  

80
3674.150 Ni  I 178$^{\ast }$ 33.0 0.16 0.06 0.10 W  

81
3694.817 Dy  II 24 9.2 0.30 0.20$^{\ast }$ 0.10 S  

82
3705.577 Fe  I 562 180 0.15 0.05 0.10 W  

83
3710.292 II 74 27.2 0.40 0.25$^{\ast }$ 0.15 S  

84
3719.947 Fe  I 1664 538 0.34 0.24 0.10 M0 24

85
3724.574 Ti  I 60 23.1 0.475 0.320 0.155 S  

86
3728.042 Ru  I 40 20.0 0.30 0.20$^{\ast }$ 0.10 S$^{\ast }$ 25

87
3733.841 Cr  I? 2 2.3 0.57 0.42 0.15 S 26

88
3734.874 Fe  I 3027 945 0.480 0.275 0.205 W 27

89
3737.141 Fe  I 1071 428 0.31 0.16 0.15 W  

90
3741.312 Sm  II-Eu  II 13 5.0 0.57 0.38$^{\ast }$ 0.19 S 28

91
3742.278 Ru  I 6 2.4 0.50 0.375$^{\ast }$ 0.125 S  

92
3743.368 Fe  I 592 193 0.275 0.175 0.100 W  

93
3745.574 Fe  I 1202$^{\ast }$ 459 0.325 0.200 0.125 W  

94
3745.910 Fe  I (Zr  II) 540 301 0.575 0.280$^{\ast }$ 0.295 S 29

95
3748.271 Fe  I 497 228 0.32 0.18 0.14 W  

96
3748.966 /Fe  I Cr  I 103 82.9 0.275 0.175 0.100 W  

97
3749.495 Fe  I 1907 578 0.45 0.20 0.25 W  

98
3753.620 /Fe  I-Ti  I 132 45.0 0.16 0.30 0.14 W 30

99
3758.245 Fe  I 1647 497 0.40 0.22 0.18 M1  
          0.69 0.42 0.27    

100
3759.299 Ti  II 334 115 0.41 0.31 0.10 W 31

101
3761.320 Ti  II 277$^{\ast }$ 61.0 0.48 0.38 0.10 M1  
          0.70 0.41 0.29    

102
3763.803 Fe  I 829 255 0.36 0.15 0.21 M1 32
          0.72 0.40 0.32    

103
3767.204 Fe  I 820 262 0.28 0.18 0.10 M1  
          0.55 0.40 0.15    

104
3780.516 /CN-Zr  I 26 9.5 0.51 0.39 0.12 S 33

105
3782.318 CN /Y  II 18 6.3 0.485 0.385 0.100 S  

106
3784.252 Nd  II-Fe  I p 16 5.8 0.65 0.38 0.27 S 34

107
3787.236 II CN 139$^{\ast }$ 17.2 0.50 0.38 0.12 S  

108
3788.861 /Cr  I-CN 69$^{\ast }$ 17.4 0.59 0.38 0.21 S  

109
3791.194 CN Nb  I 8.5 3.2 0.50 0.38 0.12 S  

110
3792.565 /CN Y  II 33 15.0 0.67 0.38 0.29 S  

111
3796.974 CN Cr  I 20 16.1 0.540 0.375 0.165 S  

112
3801.371 Fe  I-CN 75 30.2 0.550 0.375 0.175 S  

113
3801.542 Ce  II CN 50 21.0 0.575 0.375 0.200 S  

114
3806.375 CN Fe  I 67 22.0 0.63 0.37 0.26 S  

115
3807.937 /Cr  I-CN 111 35.2 0.52 0.39$^{\ast }$ 0.13 S 35

116
3809.162 Fe  I 24 9.5 0.62 0.37 0.25 S 36

117
3811.380 CN Ti  I? 35 16.0 0.64 0.37 0.27 S  

118
3812.199 CN Y  II 44$^{\ast }$ 4.5 0.51 0.37 0.14 S  

119
3813.491 I 54 28.4 0.49 0.36 0.13 S 37

120
3814.892 CN Ti  I 26 15.7 0.58 0.36 0.22 S  

121
3817.843 I CN Cr  I 40 16.0 0.50 0.36 0.14 S  

122
3824.750 CN Fe  I p 11 10.5 0.31 0.20$^{\ast }$ 0.11 S$^{\ast }$  

123
3826.770 CN-V  I Ni  I 15 11.2 0.48 0.35 0.13 S  

124
3826.957 CN-/V  II 32 21.7 0.47 0.35 0.12 S  

125
3829.365 Mg  I 874 308 0.50 0.26 0.24 M1 38

126
3830.311 CN? Sm  II 7.5 3.8 0.49 0.35 0.14 S 39

127
3832.310 Mg  I 1685 600 0.225 0.10 0.125 M1 38

128
3838.302 Mg  I 1920 641 0.27 0.16 0.11 M1 38

129
3846.986 CN-Zr  I 110$^{\ast }$ 9.6 0.435 0.335 0.10 S  

130
3848.611 CN Ce  II 41 13.5 0.470 0.335 0.135 S 40

131
3851.172 I CN 24 9.6 0.50 0.335 0.165 S  

132
3851.599 CN Fe  I 13 6.1 0.565 0.330 0.235 S  

133
3867.863 CN Ru  I 100$^{\ast }$ 1.6 0.500 0.325 0.175 S  

134
3869.313 Ti  I-CN 120$^{\ast }$ 22.5 0.475 0.320 0.155 S  

135
3870.552 CN Co  I 74$^{\ast }$ 19.4 0.435 0.320 0.115 S  

136
3871.136 CN V  I? 13 18.8 0.45 0.32 0.13 S  

137
3872.179 CN Fe  I? 19 12.4 0.525 0.320 0.205 S 40

138
3883.639 Cr  I 26 9.3 0.67 0.44$^{\ast }$ 0.23 S  

139
3891.781 Ba  II 30 11.6 0.54 0.40$^{\ast }$ 0.14 S  

--------------- Volume II ---------------
41

140
3920.269 Fe  I 341 101 0.50 0.15 0.35 W  

141
3922.923 Fe  I 414 124 0.72 0.20 0.52 W 42

142
3927.933 Fe  I (CH) 187 144 0.51 0.10 0.41 W  

143
3933.682 Ca  II [K] 20 253 4874 0.80 0.00 0.80 M1 43

144
3987.966 Yb  I 18 5.0 0.53 0.42$^{\ast }$ 0.11 S  

145
4030.763 Mn  I 326$^{\ast }$ 75.2 0.28 0.05 0.23 W 44

146
4033.072 Mn  I 229$^{\ast }$ 54.8 0.16 0.05 0.11 W 44

147
4034.492 Mn  I 213$^{\ast }$ 46.1 0.27 0.10 0.17 W  

148
4039.096 Cr  I 42 10.4 0.445 0.345 0.100 S  

149
4040.790 Ce  II-Nd  II 39 9.6 0.48 0.345 0.135 S 45

150
4045.825 Fe  I 1174 316 0.465 0.190 0.275 M1  
          0.73 0.34 0.39    

151
4049.862 Gd  II /Fe  I 11 2.7 0.67 0.44$^{\ast }$ 0.23 S  

152
4062.232 Ce  II 6 1.5 0.49 0.33 0.16 S  

153
4063.605 Fe  I (Mn  I) 787 219 0.34 0.08 0.26 M1  
          0.50 0.33 0.17    

154
4071.749 Fe  I 723 191 0.41 0.16 0.25 M1 46
          0.63 0.32 0.31    

155
4077.724 Sr  II 428$^{\ast }$ 100 1.225 0.320 0.905 MS  
          1.10 0.32 0.78    

156
4083.226 Ce  II 26 6.4 0.47 0.32 0.15 S  

157
4109.450 Nd  II 39 9.5 0.42 0.30 0.12 S  

158
4115.376 Ce  II 11 2.7 0.430 0.295 0.135 S  

159
4128.309 I 12 2.9 0.595 0.290 0.305 S  

160
4129.724 Eu  II 54 12.1 0.465 0.285 0.180 S  

161
4130.657 Ba  II 45 10.9 0.53 0.26$^{\ast }$ 0.27 S 47

162
4142.842 I 22 5.3 0.445 0.280 0.165 S  

163
4186.126 Ti  I 42 10.0 0.53 0.27$^{\ast }$ 0.26 S  

164
4222.602 Ce  II 22 5.2 0.42 0.30$^{\ast }$ 0.12 S  

165
4226.740 Ca  I 1476 342 2.190 0.235 1.955 M1  
          2.700 0.235 2.465    

166
4233.612 Fe  I 298 70.4 0.14 0.24 0.10 W 48

167
4235.949 Fe  I (Cr  I) (Y  I) 385 90.9 0.12 0.27 0.15 W 49

168
4237.891 Ti  I 16 4.0 0.38 0.23 0.15 S  

169
4246.837 Sc  II 171 40.3 0.460 0.225 0.235 MS 50
          0.470 0.225 0.245    

170
4250.130 Fe  I 342$^{\ast }$ 79.5 0.26 0.12 0.14 W  

171
4254.346 Cr  I (V  II) 393 92.4 0.40 0.16 0.24 M1  
          0.270 0.225 0.045    

172
4268.628 I 23 5.6 0.45 0.22 0.23 S  

173
4271.774 Fe  I 756 177 0.24 0.09 0.15 W  

174
4274.806 Cr  I 196 45.8 0.59 0.22 0.37 M1  
          0.36 0.22 0.14    

175
4283.014 Ca  I 133 31.0 0.33 0.18 0.15 W 51

176
4289.922 Fe  I (Ce  II) 65 19.1 0.285 0.170 0.115 S  

177
4299.249 /Fe  I Ti  I (CH) 212 49.3 0.22 0.12 0.10 W 52

178
4307.748 Ca  I 59 40.2 0.14 0.04 0.10 S 53

179
4307.912 /Fe  I Ti  II (CH) 723 165 0.14 0.04 0.10 W 54

180
4325.775 Fe  I (Fe  I p) 793 174 0.32 0.12 0.20 M1  
          0.380 0.195 0.185    

181
4339.722 Cr  I 69 23.8 0.27 0.15$^{\ast }$ 0.12 S  

182
4340.475 I [H$_{\gamma}$] 2855 659 0.25 0.13 0.12 W  

183
4354.436 La  II 13 3.4 0.295 0.195$^{\ast }$ 0.100 S 55

184
4374.944 II 88 20.1 0.39 0.18 0.21 S  

185
4383.557 Fe  I 1008 235 0.410 0.110 0.300 M1 56
          0.305 0.175 0.130    

186
4404.761 Fe  I 898 181 0.29 0.06 0.23 M1  
          0.23 0.17 0.06    

187
4415.135 Fe  I 417$^{\ast }$ 92.9 0.07 0.20 0.13 W  

188
4425.444 Ca  I 145 31.6 0.275 0.165 0.110 S  

189
4431.292 Ti  I 5 1.1 0.38 0.16 0.22 S 57

190
4453.710 Ti  I 36 9.0 0.280 0.155 0.125 S  

191
4460.225 Ce  II 100$^{\ast }$ 6.0 0.315 0.155 0.160 S 58

192
4462.993 Nd  II 13 2.9 0.26 0.15 0.11 S  

193
4471.244 Ti  I (Ce  II) 35 8.5 0.265 0.165$^{\ast }$ 0.100 S  

194
4486.914 Ce  II 11 2.5 0.28 0.15 0.13 S  

195
4500.288 Cr  I 39$^{\ast }$ 6.2 0.230 0.145 0.085 S  

196
4511.900 Cr  I 31 8.4 0.180 0.125$^{\ast }$ 0.055 S  

197
4527.325 //Ti  I /Cr  I (Ce  II) 67 14.8 0.210 0.140 0.070 S  

198
4536.054 Ti  I 147$^{\ast }$ 16.3 0.240 0.125$^{\ast }$ 0.115 S  

199
4540.710 Cr  I 52 12.3 0.165 0.110$^{\ast }$ 0.055 S  

200
4554.036 Ba  II 159 36.7 0.78 0.13 0.65 MS  
          0.50 0.13 0.37    

201
4572.284 Ce  II 15 3.3 0.205 0.130 0.075 S  

202
4595.593 Cr  I 21 4.6 0.255 0.105$^{\ast }$ 0.150 S  

203
4599.227 Ti  I 6 1.3 0.185 0.120 0.065 S  

204
4607.338 Sr  I 36 7.8 1.200 0.120 1.080 S  

--------------- Volume I ---------------
59

205
4639.368 Ti  I 36 8.4 0.185 0.115 0.070 S  

206
4639.946 Ti  I 31 7.3 0.175 0.115 0.060 S  

207
4679.983 Fe  I p 6.5 1.4 0.155 0.105 0.050 S  

208
4703.003 Mg  I 326 71.9 0.095 0.045 0.050 W  

209
4742.798 Ti  I 27 5.7 0.290 0.098 0.192 S  

210
4758.124 Ti  I 40 8.2 0.202 0.095 0.107 S  

211
4759.276 Ti  I 41 8.6 0.192 0.095 0.097 S  

212
4778.258 Ti  I 16 3.3 0.148 0.092 0.056 S  

213
4796.189 Cr  I-//Ti  I 24 5.0 0.145 0.090 0.055 S  

214
4799.794 I-//Ti  I 75$^{\ast }$ 10.2 0.175 0.089 0.086 S  

215
4805.420 Ti  I 37 7.7 0.150 0.087 0.063 S  

216
4840.884 Ti  I 60 12.6 0.136 0.082 0.054 S 60

217
4868.263 Ti  I 26 5.5 0.130 0.080 0.050 S  

218
4975.351 Ti  I 35$^{\ast }$ 3.6 0.165 0.070 0.095 S 61

219
5021.923 Cr  I Fe  I C2 22 4.4 0.115 0.065 0.050 S  

220
5025.764 Fe  I C2 11 2.2 0.124 0.063 0.061 S  

221
5112.279 Zr  II 8 1.6 0.106 0.056 0.050 S  

222
5113.127 /Cr  I MgH 23 4.5 0.120 0.056 0.064 S  

223
5115.790 Fe  I 23 4.5 0.120 0.056 0.064 S 62

224
5120.420 Ti  I 31 6.0 0.135 0.055 0.080 S 63

225
5138.717 Cr  I-MgH 13 2.4 0.130 0.055 0.075 S  

226
5139.648 Cr  I 46 8.9 0.120 0.054 0.066 S 64

227
5146.119 Fe  II p C2 37 6.6 0.140 0.054 0.086 S 65

228
5149.796 Co  I MgH 11 2.1 0.126 0.053 0.073 S  

229
5153.241 Cu  I 56$^{\ast }$ 8.5 0.163 0.053 0.110 S 66

230
5167.327 Mg  I 935$^{\ast }$ 173 0.130 0.030 0.100 W  

231
5171.028 Ru  I MgH 5 1.0 0.110 0.052 0.058 S  

232
5176.792 /V  I-MgH 10 1.9 0.115 0.051 0.064 S  

233
5196.452 Cr  I 34 6.5 0.090 0.040$^{\ast }$ 0.050 S 67

234
5206.044 Cr  I (Ti  I) 216$^{\ast }$ 36.6 0.115 0.050 0.065 MS 68
          0.115 0.050 0.065    

235
5208.432 Cr  I 247 47.4 0.110 0.040 0.070 MS 68
          0.077 0.050 0.027    

236
5218.209 Cu  I 48 9.8 0.101 0.049 0.052 S  

237
5239.823 Sc  II 55 10.5 0.117 0.048 0.069 S  

238
5387.565 Cr  I 25$^{\ast }$ 1.8 0.100 0.040 0.060 S 69

239
5528.418 Mg  I 293 53.8 0.052 0.000 0.052 W  

240
5535.51 Ba  I 113$^{\ast }$   0.165 0.032 0.133 S  

241
5565.485 Ti  I 16 2.9 0.150 0.031 0.119 S  

242
5598.491 Ca  I 118 21.1 0.080 0.030 0.050 S  

243
5644.146 Ti  I 29 5.1 0.260 0.029 0.231 S  

244
5889.973 Na  I [D2] 752$^{\ast }$ 120 0.330 0.021 0.309 MS  
          0.220 0.021 0.199    

245
5895.940 Na  I [D1] 564$^{\ast }$ 91.0 0.05 -0.02 0.07 - 70

246
6024.068 Fe  I 117$^{\ast }$ 19.8 0.060 0.010$^{\ast }$ 0.050 S  

247
6141.727 /Ba  II-Fe  I 113 19.4 0.059 0.000 0.059 W  

248
6562.808 I [H$_{\alpha }$] 4020 649 0.120 0.010 0.110 S 71
1 The linear polarization signal is quite noisy at this wavelength, and it is not possible to measure the amplitude of the Q/I profile with high precision. There are four more lines in this spectral region that, although showing linear polarization peaks with amplitudes apparently larger than 0.1%, have not been included in this table because of the high noise level: Fe  I at 3171.665 Å, //Fe  I at 3172.051 Å, Cr  II Fe  I p (CH) at 3172.087 Å, and Fe  I at 3180.236 Å.
2 The polarization peak does not fall exactly at line center. This could be due to the fact that the line is severely blended with a depolarizing Ni  I line at 3217.841 Å, which may imply also a reduction of the peak amplitude.
3 This signal is a typical case where it is not easy to establish the reference level from which the amplitude of the Q/I peak has to be measured.
4 This signal has been associated with the Ti  II line since the Q/I central peak falls at the wavelength position of the line-core of this spectral line, and because it is very similar to the signal produced by the Ti  II line at 3242.007 Å, which belongs to the same multiplet. However, the strong polarization signal in the wings may be produced by the combined action of this line and of the nearby line at 3234.647 Å (Ni  I-Fe  I).
5 This is a very deep line in the intensity spectrum, and unavoidably the polarization signal is rather noisy at line center. For this reason it is not easy to determine if it has to be classified as ``M0'' or ``M1''. The polarization lobe in the blue wing of the line is almost completely destroyed by the presence of depolarizing blended lines.
6 The ``W'' shape of this signal might be due to the effect of depolarizing lines blended with the red and blue wings of this spectral line.
7 The polarization peak does not fall exactly at line center. This displacement, as well as the large width of the intensity profile of this line, could be explained by the presence of a blend with an OH line, or in terms of the hyperfine structure shown by this element.
8 The depolarization observed beside the line-core peak of this line might be affected by the presence of blended lines. Moreover, it is not possible to exclude that the polarization observed in the far wings could be affected (or due) to the NH band. In this latter case the signal should be classified as ``W''.
9 These lines are severely blended. The larger reduced equivalent width of the Ni  I line suggests that the broad depolarization is due to this line, while the Ti  II line produces a much narrower ``W'' signal.
10 The polarization peak at line center shows a substructure made of two secondary peaks separated by a small dip.
11 It is not possible to exclude that this signal might be of type ``M1'', the wing-peaks being hidden by blended lines.
12 These lines are severely blended, and it is difficult to understand if they are both ``W'', or if only one is ``W'', the other one being ``S''.
13 The polarization peak does not fall exactly at line center.
14 This line falls in the blue depolarizing wing of a Fe  I line, and it is not easy to determine if this signal has to be classified as ``S''  or ``W''.
15 The polarization peak has quite a large width. This could be due to the unidentified blended line, or to the hyperfine structure shown by this element. This second hypothesis is supported by the similarity with the polarization signal of the Dy  II line at 3407.805 Å.
16 It is not easy to establish the reference level from which the amplitude of the Q/I peak has to be measured.
17 It is not possible to exclude that the polarization peak at 3566.7 Å$\;$ could be due to the interferences between the Fe  I lines at 3565.396 Å$\;$ and 3570.134 Å, which belong to the same multiplet. In this case the Fe  I signal should be classified as ``M1'' instead of ``W'', while the Ni  I signal as ``W'' instead of ``M1''.
18 The width of the polarization peak at the wavelength position of the Co  I-Ti  I line (line # 54) is a little surprising. It is not possible to exclude that this peak might pertain to a possible ``M1''  structure of the Fe  I line at 3585.714 Å. In this case, the Co  I-Ti  I line should be excluded.
19 In the blue wing of this line the polarization might be enhanced by (or due to) the presence of a blending Fe  I line at 3590.302 Å, in the red wing it could be affected by the wing-lobe of the far, strong Cr  I line at 3593.495 Å. It is difficult, therefore, to determine if this line should be classified as ``M1'', or ``W''.
20 Very likely the polarization in the blue wing is due to the strong Cr  I line at 3593.495 Å, while in the red wing to the Ni  I line at 3597.712 Å. If this is not the case, the signal should be classified as ``M1''.
21 It is not possible to exclude that the polarization in the far wings of this line might be the wing-lobes of the far Cr  I line at 3593.495 Å. In this case the signal should be classified as ``W''.
22 The polarization lobes in the far wings do not seem to be due to this line. If this is not the case, the signal should be classified as ``M1''.
23 We have classified this signal as ``M1'', since its wing-lobes appear to be severely blended by several depolarizing lines.
24 This line produces a very broad polarization signal. The amplitude of the wing-lobes has been measured in the blue wing at 3717.0 Å.
25 The polarization peak does not fall exactly at line center, being slightly shifted to the blue.
26 This polarization signal, though being located at the wavelength position corresponding to a (possible) Cr  I line, might be due either to CN or to the strong, nearby Fe  I line at 3734.874 Å.
27 It is not possible to exclude that the signal at 3733.841 Å (# 87) might be due to this Fe  I line. In this case this signal should be classified as ``M1'' instead of ``W''.
28 The polarization peak does not fall exactly at line center, being slightly shifted to the blue. This may indicate that the signal is due to Sm  II.
29 This signal falls in the depolarizing wing of the broad Fe  I line at 3745.574 Å  (belonging to the same multiplet), and it is difficult to determine if this is a ``S'' or a ``W'' signal.
30 The dip in the red wing, which is free of blends, induces to believe that this is a ``W'' signal, the dip in the blue wing being missing because of the blend with the Dy  II-CN line at 3753.525 Å.
31 This signal falls in the strongly polarized red wing of the Fe  I line at 3758.245 Å, and it is not possible to exclude that it might be classified as an ``M'' signal. Note that the Ti  II line at 3761.320 Å  (classified as ``M1'') belongs to the same multiplet.
32 The amplitude of the wing-lobe might be enhanced by the presence of CN lines.
33 The polarization peak does not fall exactly at line center, but it is slightly shifted to the blue. This may be an indication that the signal is due to CN.
34 Given the extremely low value of the Einstein coefficient of the Fe  I line ( $2\times10^3$ s-1), it seems quite reasonable to believe that this signal is produced by the Nd  II line.
35 The polarization peak does not fall exactly at line center, but it is slightly red-shifted. This is a strong hint that this signal might be due to CN.
36 The polarization peak does not seem to be as sharp as for an isolated line. Probably there is a contribution coming from the CN molecule.
37 The width of this polarization signal suggests that it might be enhanced by (or due to) the strongly blending Ti  II line at 3813.394 Å. It is not possible to exclude therefore that the Ti  II line should be included in the table, and classified as ``M0''.
38 The wing-lobes of these lines are probably heavily affected (enhanced) by several CN lines. For this reason the wing-lobe amplitudes have not been measured.
39 The polarization signal is severely blended with other CN lines.
40 The polarization peak does not fall exactly at line center, but is somewhat red-shifted.
41 Volume III of the atlas covers the spectral interval between 3160 Å and 3915 Å, Vol. II the spectral interval between 3910 Å and 4630 Å. The spectral interval between 3910.0 Å and 3913.5 Å is covered by both volumes. Comparing the observations made in this spectral interval, it can be noticed that the theoretical continuum plotted in Vol. III is slightly lower than in Vol. II, while the peaks observed in Q/I in Vol. III are slightly larger than in Vol. II. This might be due to the fact that, although the nominal position of the slit is $\mu=0.1$ for the observations of both atlases, because of the seeing the ``effective'' position might be different from the nominal value.
42 At line center this signal shows quite a complex profile, with several secondary peaks and dips.
43 At line center the Ca  II K line shows a ``M'' type profile, but it is important to note that quantum interferences between the Ca  II H and K lines produce a much broader signal that starts in the far blue wing of the K line, at about 3890 Å, with a positive lobe. The polarization becomes negative between the K and H lines, and it is zero (without showing any particular structure) at the wavelength position of the H line. This structure (which does not enter the classification scheme proposed in this work) has already been explained in terms of quantum interferences by Stenflo (1980) and Landi Degl'Innocenti & Landolfi (2004). It is quite surprising, however, that the atlas does not show any positive lobe in the red wing of the Ca  II H line, predicted on the other hand by the theory. This might be due to the choice of the level of the local polarized continuum, which may be wrong between 3972 Å  and 3990 Å. Note that where the polarization is negative, a depolarizing line produces a Q/I peak. For this reason, all the lines producing polarization peaks in this spectral interval have not been included in the table. Note also that three lines (Sc  I, V  I and Co  I), falling within an interval of $\approx$ 0.5 Å centered at the core of the Ca  II K line, are listed as masked lines by Moore et al. (1966).
44 At line center this signal shows quite a complex profile with several secondary peaks and dips, perhaps due to hyperfine structure.
45 The polarization signal is slightly blue-shifted with respect to line center.
46 At line center this signal shows quite a complex profile with several secondary peaks and dips.
47 This line is severely blended with a weaker Ce  II line. In the absence of this blend, the amplitude of Q/I peak might be different.
48 At line center this signal shows quite a complex profile with several secondary peaks and dips.
49 It is not possible to exclude that the ``W'' shape of this signal could be due to the depolarization produced by several blending lines.
50 The polarization profile shows a complex structure (that might be due to hyperfine structure), and an extended blue wing.
51 The depolarization in the blue wing of this profile is rather peculiar. For this reason the reference level for measuring the signal amplitude has been taken in the dip of the red wing.
52 It is difficult to measure the amplitude of this signal because of the presence of several blends.
53 It is difficult to decide whether this line has to be classified as ``S'' or ``W'' because of the blend with the /Fe  I Ti  I (CH) line at 4307.912 Å, and because the polarization signal is quite noisy around this wavelength.
54 At line center this line shows a two-peak structure, probably due to the blend.
55 The polarization peak does not fall exactly at line center, probably because of the presence of a strong blend with a Mg  I line. It is not possible to exclude that in the absence of this blend, the Q/I peak amplitude would have been significantly larger.
56 At line center this line shows a complex structure, with several secondary peaks and dips.
57 This line is severely blended with a Sc  II line. In the absence of this blend the amplitude of the Q/I signal might be larger.
58 This line is severely blended with a V  I line. In the absence of this blend the amplitude of the Q/I signal might be larger.
59 Volume II of the atlas covers the spectral interval between 3910 Å and 4630 Å, Vol. I the spectral interval between 4625 Å and 6995 Å. The spectral interval between 4624 Å and 4626.5 Å is covered by both volumes. Comparing the observations made in this spectral interval, it can be noticed that the depolarization produced by two rather intense lines (Fe  I and Cr  I) is larger in Vol. I than in Vol. II. As already discussed in the note 41, this might be due to the fact that, although the nominal position of the slit is $\mu=0.1$ for the observations of both atlases, because of the seeing the ``effective'' position might be different from the nominal value.
60 A secondary peak is observed to the blue of line center. The observation in this spectral region is quite noisy, and at this level it is not possible to exclude that the signal could be of ``W'' type.
61 This line is severely blended with a Fe  I line. In the absence of this blend the amplitude of the Q/I signal might be larger.
62 This line has an extremely weak Einstein coefficient (5.15$\times$104 s-1), and it is not possible to exclude that this polarization signal might be due to a C2 line.
63 The polarization peak does not fall exactly at line center, probably because of the presence of a strong blend with a Fe  II p C2 line. It is not possible to exclude that in the absence of this blend, the Q/I peak amplitude would have been larger.
64 This line is severely blended with a Fe  I line. In the absence of this blend the amplitude of the Q/I signal might be larger.
65 This polarization signal is quite wide. This may be due to the presence of a blending C2 line.
66 The large width of this polarization profile, and the fact that the peak does not fall at line center, suggest that the blending C2 line might affect significantly this signal.
67 The signal is somewhat noisy in this spectral region, and it is not possible to exclude that the signal might be classified as ``W''.
68 Very likely the overall structure of the polarization signal in the interval between 5204 Å and 5210 Å is due to quantum interferences between the J-levels of the term 5P$^{\rm o}$. Both lines seem to show an ``MS'' structure partially hidden by blends.
69 This line is severely blended with a Fe  I line. In the absence of this blend the amplitude of the Q/I signal might be larger.
70 This signal cannot be classified according to the scheme proposed in this work.
71 According to our scheme, this polarization signal has to be classified as ``S''. However, it has to be remarked that its width is much larger than the width of any other signal of this class.

Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.