Free Access
   

Table 2:

Estimates of ages of the eleven radio galaxies.
Source Side $\alpha_{\rm hs} $ $\alpha_{\rm final} $ $\theta$ $\nu_{0T}$ $B_{\rm min}$ t(b=1) t(b=0.25)
        arcsec GHz $\mu$ G Myr Myr
3C 6.1 N 0.84 1.37 9.5 $
10.6 \pm 2.9 $ $ 50.8 \pm 0.6 $ $ 1.0
\pm 0.1
$ $ 4 \pm 1$
3C 6.1 S 0.82 1.34 9 $
12.6 \pm 3.7 $ $ 39.2 \pm 0.6 $ $ 1.2
\pm 0.2
$ $ 5 \pm 1 $
3C 34 E 0.81 1.72 20 $
5.6 \pm 0.6 $ $ 28 \pm 0.4 $ $ 3.2
\pm 0.2 $ $
10 \pm 1 $
3C 34 W 0.84 1.95 18.5 $
4.5 \pm 0.4 $ $ 27.6 \pm 0.3 $ $ 3.5
\pm 0.2
$ $ 12 \pm 1 $
3C 41 N 0.71 1.42 10 $
6.6 \pm 1.4 $ $ 30.2 \pm 0.9 $ $ 2.5
\pm 0.3 $ $
8 \pm 1 $
3C 41 S 0.52 1.57 11 $
3.5 \pm 0.3 $ $ 45 \pm 0.4 $ $ 2.0
\pm 0.1 $ $ 9
\pm 1 $
3C 44 N 0.89 1.97 30.5 $
4.1 \pm 0.6 $ $ 40 \pm 1 $ $ 2.3
\pm 0.2 $ $
11 \pm 2 $
3C 44 S 0.90 2.03 19 $
3.7 \pm 0.4 $ $ 39.5 \pm 0.7 $ $ 2.5
\pm 0.2 $ $
12 \pm 2 $
3C 54 N 0.74 1.5 21 $
6.4 \pm 1.1 $ $ 32 \pm 1 $ $ 2.4
\pm 0.2 $ $ 7
\pm 1 $
3C 54 S 0.78 1.98 15.5 $
3.3 \pm 0.4 $ $ 48.4 \pm 0.2 $ $ 1.8
\pm 0.1
$ $ 9
\pm 1 $
3C 114 N 0.82 2.07 19.5 $
3.3 \pm 0.3 $ $ 28.2 \pm 0.1 $ $ 3.8
\pm 0.1
$ $ 11 \pm 1 $
3C 114 S 0.84 1.82 22.5 $
4.1 \pm 0.6 $ $ 27.4 \pm 0.3 $ $ 3.5
\pm 0.2
$ $
10 \pm 1 $
3C 142.1 N 0.89 1.75 13.5 $ 5.5 \pm 0.9 $ $ 39.6 \pm 0.1 $ $
2.2 \pm
0.2
$ $ 13 \pm 2 $
3C 142.1 S 0.81 1.2 30 $ 13 \pm 4 $ $ 25.7 \pm 0.5 $ $
2.7 \pm 0.4 $ $
12 \pm 2 $
3C 169.1 N 0.79 1.33 16 $ 9.3 \pm 2.5 $ $ 19.8 \pm 0.1 $ $
3.9 \pm 0.5
$ $ 9
\pm 1 $
3C 169.1 S 0.77 1.5 23.5 $ 6.3 \pm 1.4 $ $ 25.8 \pm 0.1 $ $
3.4 \pm 0.4
$ $
11 \pm 2 $
3C 172 N 0.91 1.22 20 $
21 \pm 9 $ $ 28.6 \pm 0.6 $ $ 1.7
\pm 0.3 $ $
7 \pm 2 $
3C 172 S 0.88 1.01 21.5 $
86 \pm 83 $ $ 25 \pm 1 $ $ 1.1
\pm 0.5 $ $
4 \pm 1.5$
3C 441 N 0.65 1.1 5 $
9.6 \pm 2 $ $ 27.6 \pm 0.2 $ $ 2.4
\pm 0.2 $ $
8 \pm 1 $
3C 441 S 0.95 1.35 16.5 $
17 \pm 6 $ $ 37.8 \pm 0.7 $ $ 1.2
\pm 0.2
$ $ 5 \pm 1 $
3C 469.1 N 1.11 1.76 10.5 $ 9.8 \pm 2.1 $ $ 65 \pm 4 $ $
0.6 \pm 0.1
$ $ 2.4 \pm 0.3 $
3C 469.1 S 0.95 1.96 14.5 $ 4.6 \pm 0.7 $ $ 57.3 \pm 0.5 $ $ 1.0
\pm 0.1
$ $ 3.6 \pm 0.3 $
Column 1: source name. Column 2: side of the source on which the spectral aging was determined. Column 3: the spectral index of the hotspot between 20 and 6 cm. This is adopted as the injection spectral index for the electrons in the lobe. Column 4: the spectral index in the lobe furthest from the hot spot along the brightness ridge line. The errors in hotspot and lobe spectral index are likely dominated by systematic errors rather than by thermal noise and are estimated to be $\sim$0.1. Note that any constant multiplicative error on the flux density (e.g., due to an absolute flux density calibration error) will subtract out when the difference between the hotspot and lobe spectral index is determined. Column 5: the distance from the hotspot to the location of the maximum spectral index. The estimated error is of order 1 arcsec. Column 6: the estimated break frequency. Column 7: the equipartition magnetic field in the lobe obtained from $B_{\rm min} =
(B_{10}B_{25})^{0.5}$ using the minimum energy fields obtained at distances of 10 and 25 kpc from the hotspot along the ridge line towards the nucleus. Column 8: the radiative loss age at the distance $\theta$ from the hotspot, assuming the magnetic field is equal to the minimum energy value. Column 9: the radiative loss age at the distance $\theta$ from the hotspot, assuming the magnetic field is equal to 1/4 of the minimum energy value.

Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.