Issue |
A&A
Volume 697, May 2025
|
|
---|---|---|
Article Number | A172 | |
Number of page(s) | 24 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/202452942 | |
Published online | 20 May 2025 |
Very high-energy gamma-ray detection and long-term multiwavelength view of the flaring blazar B2 1811+31
1
Japanese MAGIC Group: Department of Physics, Tokai University, Hiratsuka, 259-1292 Kanagawa, Japan
2
Japanese MAGIC Group: Institute for Cosmic Ray Research (ICRR), The University of Tokyo, Kashiwa, 277-8582 Chiba, Japan
3
ETH Zürich, CH-8093 Zürich, Switzerland
4
Università di Siena and INFN Pisa, I-53100 Siena, Italy
5
Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology (BIST), E-08193 Bellaterra (Barcelona), Spain
6
Universitat de Barcelona, ICCUB, IEEC-UB, E-08028 Barcelona, Spain
7
Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, 18008, Granada, Spain
8
National Institute for Astrophysics (INAF), I-00136 Rome, Italy
9
Università di Udine and INFN Trieste, I-33100 Udine, Italy
10
Max-Planck-Institut für Physik, D-85748 Garching, Germany
11
Università di Padova and INFN, I-35131 Padova, Italy
12
Croatian MAGIC Group: University of Zagreb, Faculty of Electrical Engineering and Computing (FER), 10000 Zagreb, Croatia
13
Centro Brasileiro de Pesquisas Físicas (CBPF), 22290-180 URCA, Rio de Janeiro (RJ), Brazil
14
IPARCOS Institute and EMFTEL Department, Universidad Complutense de Madrid, E-28040 Madrid, Spain
15
Instituto de Astrofísica de Canarias and Dpto. de Astrofísica, Universidad de La Laguna, E-38200, La Laguna, Tenerife, Spain
16
University of Lodz, Faculty of Physics and Applied Informatics, Department of Astrophysics, 90-236 Lodz, Poland
17
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, E-28040 Madrid, Spain
18
Departament de Física, and CERES-IEEC, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
19
Università di Pisa and INFN Pisa, I-56126 Pisa, Italy
20
INFN MAGIC Group: INFN Sezione di Bari and Dipartimento Interateneo di Fisica dell’Università e del Politecnico di Bari, I-70125 Bari, Italy
21
Armenian MAGIC Group: A. Alikhanyan National Science Laboratory, 0036 Yerevan, Armenia
22
Department for Physics and Technology, University of Bergen, Norway
23
INFN MAGIC Group: INFN Sezione di Torino and Università degli Studi di Torino, I-10125 Torino, Italy
24
Croatian MAGIC Group: University of Rijeka, Faculty of Physics, 51000 Rijeka, Croatia
25
Universität Würzburg, D-97074 Würzburg, Germany
26
Technische Universität Dortmund, D-44221 Dortmund, Germany
27
Japanese MAGIC Group: Physics Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 739-8526 Hiroshima, Japan
28
Deutsches Elektronen-Synchrotron (DESY), D-15738 Zeuthen, Germany
29
Armenian MAGIC Group: ICRANet-Armenia, 0019 Yerevan, Armenia
30
Croatian MAGIC Group: Josip Juraj Strossmayer University of Osijek, Department of Physics, 31000 Osijek, Croatia
31
Finnish MAGIC Group: Finnish Centre for Astronomy with ESO, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
32
University of Geneva, Chemin d’Ecogia 16, CH-1290 Versoix, Switzerland
33
Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata 700064, West Bengal, India
34
Inst. for Nucl. Research and Nucl. Energy, Bulgarian Academy of Sciences, BG-1784 Sofia, Bulgaria
35
Japanese MAGIC Group: Department of Physics, Yamagata University, Yamagata 990-8560, Japan
36
Finnish MAGIC Group: Space Physics and Astronomy Research Unit, University of Oulu, FI-90014 Oulu, Finland
37
Japanese MAGIC Group: Chiba University, ICEHAP, 263-8522 Chiba, Japan
38
Japanese MAGIC Group: Institute for Space-Earth Environmental Research and Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, 464-6801 Nagoya, Japan
39
Japanese MAGIC Group: Department of Physics, Kyoto University, 606-8502 Kyoto, Japan
40
INFN MAGIC Group: INFN Roma Tor Vergata, I-00133 Roma, Italy
41
Japanese MAGIC Group: Department of Physics, Konan University, Kobe, Hyogo 658-8501, Japan
42
Also at International Center for Relativistic Astrophysics (ICRA), Rome, Italy
43
Also at Port d’Informació Científica (PIC), E-08193 Bellaterra (Barcelona), Spain
44
Now at Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France
45
Also at Department of Physics, University of Oslo, Norway
46
Also at Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
47
Max-Planck-Institut für Physik, D-85748 Garching, Germany
48
Also at INAF Padova, I-35131 Padova, Italy
49
INAF Istituto di Radioastronomia, Via P. Gobetti 101, 40129 Bologna, Italy
50
Institute of Astrophysics, Foundation for Research and Technology-Hellas, GR-71110 Heraklion, Greece
51
Owens Valley Radio Observatory, California Institute of Technology, Pasadena, CA 91125, USA
52
Julius-Maximilians-Universität Würzburg, Fakultät für Physik und Astronomie, Institut für Theoretische Physik und Astrophysik, Lehrstuhl für Astronomie, Emil-Fischer-Straße 31, D-97074 Würzburg, Germany
53
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany
54
University of Siena, Department of Physical Sciences, Earth and Environment, Astronomical Observatory, Via Roma 56, 53100 Siena, Italy
55
Hans-Haffner-Sternwarte (Hettstadt), Naturwissenschaftliches Labor für Schüler am FKG, Friedrich-Koenig-Gymnasium, D-97082 Würzburg, Germany
56
Lehrstuhl für Astronomie, Universität Würzburg, D-97074 Würzburg, Germany
57
Astroteilchenphysik, TU Dortmund, Otto-Hahn-Str. 4A, D-44227 Dortmund, Germany
58
Dipartimento di Fisica ”M. Merlin” dell’Università e del Politecnico di Bari, Via Amendola 173, I-70126 Bari, Italy
59
Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari, Italy
60
Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel
61
Department of Physics and McDonnell Center for the Space Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis 63130, USA
62
Remeis Observatory and Erlangen Centre for Astroparticle Physics, Universität Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg, Germany
63
Finnish Center for Astronomy with ESO (FINCA), Quantum, Vesilinnantie 5, FI-20014 University of Turku, Finland
64
Aalto University Metsähovi Radio Observatory, Metsähovintie 114, 02540 Kylmälä, Finland
65
Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA91125, USA
66
University of Trento, 38123, Trento, Italy
⋆ Corresponding authors; D. Cerasole, S. Loporchio and L. Pavletić, contact.magic@mpp.mpg.de
Received:
9
November
2024
Accepted:
20
March
2025
Context. Among the blazars whose emission has been detected up to very high-energy (VHE; 100 GeV<E<100 TeV) γ rays, intermediate synchrotron-peaked BL Lacs (IBLs) are quite rare. The IBL B2 1811+31 (z = 0.117) exhibited intense flaring activity in 2020. Detailed characterization of the source emission from radio to γ-ray energies was achieved with quasi-simultaneous observations, which led to the first-time detection of VHE γ-ray emission from the source with the MAGIC telescopes.
Aims. In this work, we present a comprehensive multiwavelength (MWL) view of B2 1811+31, with a specific focus on the 2020 VHE flare, employing data from MAGIC, Fermi-LAT, Swift-XRT, Swift-UVOT, and several optical and radio ground-based telescopes.
Methods. Long-term MWL data were employed to contextualize the high-state episode within the source emissions over 18 years. We investigated the variability, cross-correlations, and classification of the source emissions during low and high states. We propose an interpretative leptonic model for the observed radiative high state.
Results. During the 2020 flaring state, the synchrotron peak frequency shifted to higher values and reached the limit of the IBL classification. Variability in timescales of a few hours in the high-energy (HE; 100 MeV<E<100 GeV) γ-ray band poses an upper limit of 6×1014 δD cm on the size of the emission region responsible for the γ-ray flare, with δD being the relativistic Doppler factor of the region. During the 2020 high state, the average spectrum became harder in the HE γ-ray band compared to the low states. A similar behavior has been observed in X-rays. Conversely, during different activity periods, we find harder-when-brighter trends in X-rays and a hint of softer-when-brighter trends at HE γ rays. A long-term HE γ-ray and optical correlation indicates that the same emission regions dominate the radiative output in both ranges, whereas the evolution at 15 GHz shows no correlation with the fluxes at higher frequencies. We test one-zone and two-zone synchrotron-self-Compton models for describing the broadband spectral energy distribution during the 2020 flaring state and investigate the self-consistency of the proposed scenario.
Key words: radiation mechanisms: non-thermal / galaxies: active / BL Lacertae objects: individual: B2 1811+31 / gamma rays: general / X-rays: galaxies
© The Authors 2025
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.