Issue |
A&A
Volume 690, October 2024
Solar Orbiter First Results (Nominal Mission Phase)
|
|
---|---|---|
Article Number | A233 | |
Number of page(s) | 15 | |
Section | The Sun and the Heliosphere | |
DOI | https://doi.org/10.1051/0004-6361/202450204 | |
Published online | 10 October 2024 |
Assessment of the near-Sun magnetic field of the 10 March 2022 coronal mass ejection observed by Solar Orbiter
1
Section of Astrogeophysics, Department of Physics, University of Ioannina, 45110 Greece
2
Space Exploration Sector, Johns Hopkins Applied Physics Laboratory, Laurel, MD 20723, USA
3
Institute of Physics, University of M. Curie-Skłodowska, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
4
Research Center for Astronomy and Applied Mathematics, Academy of Athens, 11527 Athens, Greece
Received:
1
April
2024
Accepted:
14
July
2024
Aims. We estimate the near-Sun axial magnetic field of a coronal mass ejection (CME) on 10 March 2022. Solar Orbiter’s in situ measurements, 7.8 degrees east of the Sun-Earth line at 0.43 AU, provided a unique vantage point, along with the WIND measurements at 0.99 AU. We determine a single power-law index from near-Sun to L1, including in situ measurements from both vantage points.
Methods. We tracked the temporal evolution of the instantaneous relative magnetic helicity of the source active region (AR), NOAA AR 12962. By estimating the helicity budget of the pre-and post-eruption AR, we estimated the helicity transported to the CME. Assuming a Lundquist flux-rope model and geometrical parameters obtained through the graduated cylindrical shell (GCS) CME forward modelling, we determined the CME axial magnetic field at a GCS-fitted height. Assuming a power-law variation of the axial magnetic field with heliocentric distance, we extrapolated the estimated near-Sun axial magnetic field to in situ measurements at 0.43 AU and 0.99 AU.
Results. The net helicity difference between the post-and pre-eruption AR is ( − 7.1 ± 1.2)×1041 Mx2, which is assumed to be bodily transported to the CME. The estimated CME axial magnetic field at a near-Sun heliocentric distance of 0.03 AU is 2067 ± 405 nT. From 0.03 AU to L1, a single power-law falloff, including both vantage points at 0.43 AU and 0.99 AU, gives an index −1.23 ± 0.18.
Conclusions. We observed a significant decrease in the pre-eruptive AR helicity budget. Extending previous studies on inner-heliospheric intervals from 0.3 AU to ∼1 AU, referring to estimates from 0.03 AU to measurements at ∼1 AU. Our findings indicate a less steep decline in the magnetic field strength with distance compared to previous studies, but they align with studies that include near-Sun in situ magnetic field measurements, such as from Parker Solar Probe.
Key words: Sun: corona / Sun: coronal mass ejections (CMEs) / Sun: magnetic fields
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.