Issue |
A&A
Volume 690, October 2024
|
|
---|---|---|
Article Number | A33 | |
Number of page(s) | 15 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/202345986 | |
Published online | 26 September 2024 |
ALMA-IMF
XV. Core mass function in the high-mass star formation regime
1
Univ. Grenoble Alpes, CNRS, IPAG,
38000
Grenoble,
France
2
DAS, Universidad de Chile,
1515 camino el observatorio, Las Condes,
Santiago,
Chile
3
National Astronomical Observatory of Japan, National Institutes of Natural Sciences,
2-21-1 Osawa, Mitaka,
Tokyo
181-8588,
Japan
4
Department of Astronomical Science, SOKENDAI (The Graduate University for Advanced Studies),
2-21-1 Osawa, Mitaka,
Tokyo
181-8588,
Japan
5
Departamento de Astronomía, Universidad de Concepción,
Casilla 160-C,
Concepción,
Chile
6
Franco-Chilean Laboratory for Astronomy, IRL 3386, CNRS and Universidad de Chile,
Santiago,
Chile
7
Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM,
91191
Gif-sur-Yvette,
France
8
Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México,
Morelia,
Michoacán
58089,
Mexico
9
Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, CNRS,
B18N, allée Geoffroy Saint-Hilaire,
33615
Pessac,
France
10
Department of Astronomy, University of Florida,
PO Box 112055,
Florida,
USA
11
Herzberg Astronomy and Astrophysics Research Centre, National Research Council of Canada,
5071 West Saanich Road,
Victoria,
BC V9E 2E7,
Canada
12
Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris,
Paris,
France
13
SKA Observatory, Jodrell Bank, Lower Withington,
Macclesfield
SK11 9FT,
UK
14
Departments of Astronomy and Chemistry, University of Virginia,
Charlottesville,
VA
22904,
USA
15
Observatoire de Paris, PSL University, Sorbonne Université, LERMA,
75014,
Paris,
France
16
INAF – Osservatorio Astrofisico di Arcetri,
Largo E. Fermi 5,
50125
Firenze,
Italy
17
Departament de Física Quàntica i Astrofísica (FQA), Universitat de Barcelona (UB),
c. Martí i Franquès, 1,
08028
Barcelona,
Spain
18
Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB),
c. Martí i Franquès, 1,
08028
Barcelona,
Spain
19
Institut d’Estudis Espacials de Catalunya (IEEC),
08340,
Barcelona,
Catalonia,
Spain
20
Institute of Astronomy, National Tsing Hua University,
Hsinchu
30013,
Taiwan
21
Instituto Argentino de Radioastronomía (CCT-La Plata, CONICET; CICPBA),
C.C. No. 5, 1894, Villa Elisa,
Buenos Aires,
Argentina
22
Department of Astronomy, Yunnan University,
Kunming
650091,
PR China
23
Shanghai Astronomical Observatory, Chinese Academy of Sciences,
80 Nandan Road,
Shanghai
200030,
PR China
24
Steward Observatory, University of Arizona,
933 North Cherry Avenue,
Tucson,
AZ
85721,
USA
25
S. N. Bose National Centre for Basic Sciences,
Block JD, Sector III, Salt Lake,
Kolkata
700106,
India
26
ESO Headquarters,
Karl-Schwarzchild-Str 2,
85748
Garching,
Germany
27
Institut de Radioastronomie Millimétrique (IRAM),
300 rue de la Piscine,
38406
Saint-Martin-D’Hères,
France
28
National Radio Astronomy Observatory,
PO Box O,
Socorro,
NM
87801,
USA
Received:
24
January
2023
Accepted:
24
July
2024
The stellar initial mass function (IMF) is critical to our understanding of star formation and the effects of young stars on their environment. On large scales, it enables us to use tracers such as UV or Hα emission to estimate the star formation rate of a system and interpret unresolved star clusters across the Universe. So far, there is little firm evidence of large-scale variations of the IMF, which is thus generally considered “universal”. Stars form from cores, and it is now possible to estimate core masses and compare the core mass function (CMF) with the IMF, which it presumably produces. The goal of the ALMA-IMF large programme is to measure the core mass function at high linear resolution (2700 au) in 15 typical Milky Way protoclusters spanning a mass range of 2.5 × 103 to 32.7 × 103 M⊙. In this work, we used two different core extraction algorithms to extract ≈680 gravitationally bound cores from these 15 protoclusters. We adopted a per core temperature using the temperature estimate from the point-process mapping Bayesian method (PPMAP). A power-law fit to the CMF of the sub-sample of cores above the 1.64 M⊙ completeness limit (330 cores) through the maximum likelihood estimate technique yields a slope of 1.97 ± 0.06, which is significantly flatter than the 2.35 Salpeter slope. Assuming a self-similar mapping between the CMF and the IMF, this result implies that these 15 high-mass protoclusters will generate atypical IMFs. This sample currently is the largest sample that was produced and analysed self-consistently, derived at matched physical resolution, with per core temperature estimates, and cores as massive as 150 M⊙. We provide both the raw source extraction catalogues and the catalogues listing the source size, temperature, mass, spectral indices, and so on in the 15 protoclusters.
Key words: methods: observational / techniques: interferometric / stars: formation / ISM: clouds / ISM: structure / submillimeter: ISM
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.