Issue |
A&A
Volume 689, September 2024
|
|
---|---|---|
Article Number | A84 | |
Number of page(s) | 11 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/202450936 | |
Published online | 05 September 2024 |
Towards a complete picture of the Sco-Cen outflow
1
University of Vienna, Department of Astrophysics,
Türkenschanzstrasse 17,
1180
Vienna,
Austria
2
University of Vienna, Research Network Data Science at Uni Vienna,
Kolingasse 14-16,
1090
Vienna,
Austria
Received:
31
May
2024
Accepted:
17
July
2024
Previous studies have presented strong evidence that the Sun is crossing an outflow originating from the Scorpius-Centaurus OB association (Sco-Cen). Understanding this outflow’s origin and structure illuminates how massive star formation shapes the interstellar medium (ISM) and helps predict future Galactic conditions that will affect our Solar System. We analysed H I emission and optical ISM absorption lines towards 47 early-type stars around the Upper Sco region to refine the map of the Sco-Cen outflow. Combined with data for nearby stars, we find that the outflow has at least two components: a faster, low-density component traced by Ca II, and a slower, possibly lower-density component traced by Mg II and Fe II in the UV that is passing through the Earth. A constant flow model successfully describes both components with (l, b, |v|) = (335.4°, −6.8°, 14.0 km s−1) and (305.5°, +17.6°, 21.2 km s−1), respectively. The origin of the faster component is possibly related to the Sco-Cen 15 Myr population, which is consistent with the origin of the slower component within 2 σ. A simple model comparison indicates that a constant flow is favoured over a spherical flow geometry, implying an extended distribution of feedback sources within Sco-Cen. We also find that a poorly studied 25 pc long H I cloud at a distance of 107 pc belongs to the established Sco-Cen flow.
Key words: ISM: kinematics and dynamics / ISM: lines and bands / ISM: structure
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.